L ogoBlocks:

A Graphical Programming Language for
| nteracting with the World

by Andrew Begel

AUP Advisor: Mitchel Resnick
Epistemology and Learning Group
MIT Media Laboratory

May 24, 1996

L ogoBlocks:

A Graphical Programming Language for
| nteracting with the World

by Andrew Begel
May 24, 1996

Abstract

LogoBlocksisagraphical programming language for the Programmable Brick, developed
at the Epistemology and Learning Group in the MIT Media Lab. The Programmable Brick
isasmal handheld computer that a person can attach to a LEGO creation to control motors
and read inputs from sensors. LogoBlocks isintended to be an aternative language to
BrickLogo, which isavariant of Logo developed for use with the Programmable Brick.
Graphical programming has some significant advantages over textual programming
especialy in providing visual cuesfor younger programmers. LogoBlocks attemptsto
concretize some of these ideas and make the process of building active LEGO cresations
easier and more intuitive for young children.

AUP Advisor: Mitchd Resnick

Table of Contents

S I 011 o Yo U Tox 4 1] o PP 5
2. BaCKgrOUNG.o 6
2.1 Visual Programming.......o.oeoeeiiere e 6
2.1.1 BackgroUnd.o 6
2.1.2 AVANTAGES. ..o 8
2.1.3 DiSadVaNTAgES. et 8
2.1.4 CONCIUSTON. .. 9

2.2 [00 o TP 9
2.3 LEGO/ L Og0. ittt 10
2.3.1 Computer IN BriCK... ..o 10
2.3.2 MOLOIS, SENSOIS. ... et 11
2.3.3 LEGO RODOLS. .. ettt 11
2.3.4 BriCKLOGO. . e 11

3. LOQOBIOCKS. . 12
3.1 Graphical Brick LOQO......ciuiiuiiiiiiiiiieee e 12
3.1.1 SampPle Program.. ... 12

3.2 BIOCKS .. et 13
3.21 ACHON BIOCKS. ...t 14
3.2.2 SENSOr BIOCKS ... e 14
3.2.3 Variable BIOCKS. ... 15
3.24 Procedure BIOCKS. ..o 15

3.3 INterPretaliON. .. e 16
3.3.1 CluSter ANAlYSIS. . 16
3.3.2 Form and Parse Spanning Tree........ccc.ovviieiiiiiiei e 16
3.3.3 LOQO -3 P-CO0e. .. i 17
3.34 Download to BriCK.......coeiiii e 18

N B T =Tt U ST o] o 19
A1 IMPIEMENTAION ... e 19
A2 HIS Oy et e 19
A3 ViISUBI CUBS ... e 19
431 KEY 1N LOCK. ...t 19
4.3.2 SNAP INTO PlaCe......ee 19
4.3.3 Program FlOW ... 20
4.34 MUILIPIE PagES.o 20

B CONCIUSION. e 21
51 Fun and Simple. ... 21
5.2 EXPIESSI V. ettt 21
5.3 FUNCHONAIITY oo 21
54 FULUIE DireCHIONS. .. et 21
541 ENCapsulation.o 21
5.4.2 Shapes and TeXTUIES.o 21
5.4.3 Function Arguments and Return Values..............cccoovvviiiiiiiineennnn. 22
544 Branching Program FIOW ..o 22
5.4.5 Computer Simulation of BriCK.........ccocoviiiiiiiiiinieeee 22

List of Figures

Figure 1: Prograph Program to Convert Celsius to Fahrenheit
Figure 2: Agentsheets Traffic Simulation...........................

Figure 3: Programmable BricK..........c.cooveviiiiiiiiiiininenns

Figure 4: LogoBlocks Program: Wall Avoider

1. Introduction

LogoBlocksisagraphical programming language intended for use with the Programmable
Brick developed at the Epistemology and Learning Group inthe MIT MediaLab. The
Programmable Brick isasmall handheld computer that can control up to four motors and
can read values from six sensors. Children can make LEGO creations like cars and robots,
attach motors and sensors to them, and program the Programmable Brick to actuate and
control their creation.

The programming language typically used for the Programmable Brick (hereafter known as
the Brick) isavariant of Logo called BrickLogo. This language was developed as an
extension to Logo. It added primitives to the language to control motors and read sensor
values. Thereisaso aversion of C (Interactive C) that was developed for the Brick.

LogoBlocksisagraphical variant of BrickLogo. Instead of writing atextua program with
its syntactical constructs, children can push blocks which represent pieces of a program
around the screen. The goals of this project are manyfold. Is programming easier with

L ogoBlocks? Can the graphical language support normal idioms for robot control ? Are
there any idioms that might be better expressed graphically?Isit more fun for kidsto
program graphically? Can younger kids program with LogoBlocksif they couldn’t
program in BrickLogo? Is the learning curve shallower for LogoBlocks than BrickLogo?Is
the ceiling as high? I's programming made more concrete or more abstract using graphical
blocksinstead of blocks of text?

2. Background
2.1 Visual Programming

2.1.1 Background

“Visua programming is commonly defined as the use of visual expressions (such as
graphics, drawings, animation or icons) in the process of programming. These visual
expressions may be used in programming environments as graphical interfaces for textual
programming languages;” they may be used to form new wholly graphical program
syntax’s; “ or they may be used in graphical presentations of the behavior or structure of a
program.”

Some graphical languages represent the instruction flow in a program, others represent the
flow of data through a system. There are many different types of visual languages, ranging
from those that just try to implement simple action and response systemsto full fledged
implementations of Turing complete languages that include modern programming
techniques such as abstraction and object orientation.

2.1.1.1 Instruction Flow

Instruction flow languages show the path of execution of the program pictorially. Most
often thistakes the form of a flow chart. Thereis active research going on in thisfield to
incorporate parallel and concurrent programming paradigms into visual programming. 2

2.1.1.2 Data Flow

Data flow languages model programming using functions asfilters for data objects. An
good example of thisisfound in Prograph, a popular visua language for the Macintosh
produced by Pictorius, Inc. Prograph includes object encapsulation and functional
encapsulation and provides a robust interface to the underlying operating system. °

S[I=EZ 1:1 Celsius to Fahrenheit EEEEIE=EE
& 3 s
Enter temperature
ask 1.8
2
* Celsius = * + * Fahrenheit”™
q________ ! |
o 7
E: |
I
el ||

Figure 1: Prograph Program to Convert Celsius to Fahrenheit

2.1.1.3 Programming by Example

Programming by example [or "programming by demonstration”] is atechnique for teaching
the computer new behavior by demonstrating actions on concrete examples. The system
records user actions and generalizes a program that can be used in new examples. A good
example of programming by exampleisthe Mondrian software by Henry Lieberman of the
MIT MediaLab.* Mondrian is agraphical system that you can teach how to manipulate
graphical images. Y ou show the system what to do and it can generalize rules on what to
do in different situations.

2.1.1.4 Rewrite Rules

Graphical rewrite rules are used in a number of projects, including Apple’ s KidSim® and
Alex Repenning’s work on Agentsheets® at the University of Colorado. Graphical rewrite
rules are away to specify state transitions graphically. In Agentsheets, for example, if you
wanted a car to drive on aroad, you would draw two pictures. The first one would be a
road with a car on the left side; the second picture would be the road with the car on the
right side. Then you link the two with atransition. When you apply the rule, the car would
drive aong the road until the end.

by iyt R s oy
G e 3 R,

N

Figure 2: Agentsheets Traffic Simulation

2.1.2 Advantages

Graphical programming has its advantages and disadvantages vs. textual programming.
Using graphical representations of objects, you can more concretely show object
orientation (double click on an object suitcase and see what isinside), eliminate annoying
syntax (like{}'sand ()’sin C, BEGIN and END’sand ()’sin Pascal, and ()’sin Lisp) and
better visualize the pathways that your program is following. Parallelism can also be made
more explicit; al of the different program clusters on your screen can run at the sametime.

Graphica programming can also use metaphors from real life to make programming easier.
For example, programming a light switch to turn on and off by setting atime on aclock is
very intuitive. Graphical programming also allows for easy sharing of programs. Y ou can
define your program to be a particular block and just “give” the block to afriend to try in
his program. Thisis similar to the proposed benefits of OOP design in textual languages.
Another advantage is easy browsability. Looking at a picture of a program, a user might
more easily be able to discern its meaning, rather than looking at a large textual program
that is composed of many codefiles.

Perhaps one of the best advantages is the use of visual cuesin graphical languages.
Connections between objects can be made more explicit through the design and graphical
representation of the constructs. Procedures that take parameters might have holes drilled
into them that the parameters are the right shape to fill.

2.1.3 Disadvantages

On the other hand, there are also disadvantages. Some graphical languages are graphical to
the core, which leads to frustration for sophisticated programmers who want to concisely
express a statement that might be better represented using text. Screen real estateisaso a
limiting factor. Thisis called the “ Deutsch Limit.” “The problem with visua programming
isthat you can't have more than 50 visua primitives on the screen at the same time.”
Deutsch originally said something like “Well, thisis al fine and well, but the problem with
visua programming languages is that you can't have more than 50 visual primitives on the
screen at the same time. How are you going to write an operating system?” ’

In order for icons and graphics to be understandabl e they need to be big enough to see or
have atextual label. Some languages also depict function calls by lines between clusters of

8

graphics. If there are too many functions on a“page,” the code becomes messy and hard to
follow.

Another problem is language extendibility. C and Lisp were built to be extended by the
enterprising programmer. At thistime, graphical languages tend to be limited to the
author’ s design without thought for adding additional features.

2.1.4 Conclusion

Despite al of the negatives associated with visua programming, there is a definite apped
for kids. Children like to manipulate blocks and put together collections of objects. Often a
major stumbling block to teaching kids to program isthat they find the syntax
overwhelming. Since graphical program tends to eliminate syntax problems, kids will find
it easier to get a program running. There are a'so many interesting projects that can be made
using very short programs. A simple graphical language could reduce the threshold needed
for a child to make something fun. When the child gets older and more technologically
savvy, he can migrate to textual languages and use their greater complexity.

2.2 Logo

Logo isacomputer language that was invented by Seymour Papert and colleaguesin the
1960’ s. Papert’ s research involved children and learning. How do children learn? How can
they learn better? His ideas on the subject are contained within his theory of
constructionism, derived from Piaget’ s constructivist theories. In constructionism, Papert
argues that children, and people, can learn better by doing and by creating. By making
something, the person is employing “active’ learning, as opposed to listening to alecture
and “passively” learning something. In building something, a person is engaged with his
creation. He has put in his time to make the object and he ownsit. Another benefit of this
style of learning is that the person doesn’t just learn when they are being taught. Since they
have built something, they can take time afterward to look at the product and reflect upon it.
What makes it work? What could be improved?

Logo was invented to bring the complex world of computer programming to children. Itis
based on Lisp, but changesit by removing most of the syntax from the language. There are
no parentheses, and functions take constant number of arguments. Variables are referred to
by their quoted name, and referenced by preceding the name with a colon. Procedures are
defined by the construct:

to do-everything :inputa :inputb :inputc
do-this :inputa
do-that :inputb
out put do-the-other-thing :inputc
end

Logo’'s popularity increased alot when Papert invented the Logo Turtle. One of Papert’s
fondest memories is when he realized that the gears he had played with as a child were a
concrete way in which he could solve fraction problems. For Logo, this concrete proxy
would be the turtle.

By imagining themselves as the turtle, children can learn a new type of programming style
and a new type of mathematical style that they would often missin atypical school lesson.

9

For instance, if you ask a child how many degrees are in atriangle, he would say 180, of
course. If you sit the child down at the computer and ask him to draw atriangle with the
Logo Turtle, he'll immediately think, repeat 3 [fd 50 rt 60], becauseif you repeat
rt 60, 3times, you get 180 degrees. When the child runs this, however, he finds that the
turtle has not made atriangle, but instead made an arc with three segments. The child was
never taught to consider that 60 was an interior angle of the triangle, but when you draw a
triangle, you need to draw the exterior angles of 120. Once the child reaizesthis, drawing
the triangle, or any other polygon becomes ssimple.

2.3 LEGO/Logo

Before the Logo Turtle existed as a computer object, it was actualy built as a hardware
robot. Several years ago, the Epistemology and Learning group? invented L EGO/Logo.’
Thisisamerging of the LEGO construction set'® with the programming ideas found in
Logo. When achild builds a creation out of LEGO, he can then animate it and have it
interact with the world via sensors and motors.

Thefirst version of LEGO/Logo was a control box that connected to a computer via seria
line. The user could program his motors and sensorsin Logo, connect his robots up to the
control box and press return. His car or merry-go-round would start to move. One problem
with this, however, was that the robot was tethered to the computer. It could not move very
far away. The Programmable Brick was created to address this problem.

2.3.1 Computer in Brick
The Programmable Brick isan 8-bit computer controlled by a 6BHC11 processor
embedded in a LEGOized box.™ It has four motor ports, (a b ¢ d) and six sensor ports

(a b cde f)ltasohasa2-line LCD screen, two push buttons, and a menu-dial. For
communication and power, thereis an RJ11 plug and IR-in and | R-ouit.

10

Figure 3: Programmable Brick

2.3.2 Motors, Sensors

The Programmable Brick can support four LEGO 9V motors. These can be used to actuate
wheels through a gear box or be trandated into linear motion viaworm gear. Thereisaso
support for three servos which have much more torque than motors, but only move
through alimited arc.

There are afew different types of sensors available for the Brick. There are digital sensors,
such as switches, sound sensors, break-beam sensors and “people” detectors. There are
also alarge variety of analog sensors, such as light sensors, temperature sensors, pressure
sensors, sound volume sensors and IR detectors.

2.3.3 LEGO Robots

Programmabl e Bricks have been used to make cars, robot walkers, scul ptures, amusement
park rides and many other things. Since LEGOs are so versatile, you can make most
anything. Once you add in the Programmable Brick, the possibilities just open up. One
current project involves using the Brick to play music for LEGO musical instruments.
Another popular useisin the 6.270 contest at MIT, where students have one month to
build arobot that will compete in a contest at the end of the course.”

2.3.4 BrickLogo

BrickLogo is an extension to the Logo language that adds in primitives to control motors
and sensors. Some of these include,

a, on (talk to motor aand then turn it on)

b, rd (talk to motor b and reverseits direction)
onfor <tinme period> (turns on amotor for a certain time period)
repeat 4 [onfor 5 wait 5] (repeat 4 times, turn on motor for 5/10ths of

a second and then wait 5/10ths of a second.)

Hereisaprogram to make a car follow awall by checking that its left wall sensor is
pushed. If it ever gets unpushed, it should turn back toward the wall.

to foll ow wal | (this defines a Logo procedure called follow-
wall)
ab, on (turn on motors aand b)

if not sensora [b, off wait 5] (if sensorais not on, turn off motor b
for 0.5 seconds)

fol | ow wal | (recurse and call follow-wall again)

end

11

3. LogoBlocks

LogoBlocksis an environment that makes programming the Programmable Brick easier
and more appealing to kids. LogoBlocks has alow threshold for learning, and eventualy
will have ahigh ceiling for the projects you can program with it. By manipulating colored
blocks of different shapes and sizes, a child might create a program that controls his Lego
car to move forward until it bumps into awall, and then move backwards. It might control
alight follower--a car that looks for light and turnsin that direction.

3.1 Graphical Brick Logo

LogoBlocksis a cross between visual programming and Brick Logo. Users can pull blocks
from a palette on the left side of the screen over onto the main work area. Each block isa
different color and a different shape. The user can make his program and then download it
viaseria line to the Programmable Brick.

3.1.1 Sample Program

Hereisasimple program in LogoBlocks involving severa procedures. It controls a LEGO
car with two front touch sensors to move forward until it hitsawall and then to back up for
2.5 seconds, turn for 2.5 seconds and then resume forward operation until it hits awall

again.

Igmg Wall Avoider S5————————————— 1=

=

]
]

i
L
-

12

Figure 4: LogoBlocks Program: Wall Avoider

The LogoBlocks palette is on the left side of the screen. From there, several blocks were
dragged onto the main working area and formed into clusters. The top left cluster is headed
by adefi ne Spider block (note the spider-like texture on the block), and followed by an
AB, block and then on. This defines a procedure called Spi der which turns on motors A
and B and then returns.

The second procedureisin the middle. It is headed by adef i ne Snake block, and
followed by aB, block,thenoff wait 25 On. Thisdefinesa procedure called Snake
which turns off motor B for 2.5 seconds and then turnsit back on.

The third procedure is defined on the lower |eft. It is headed by adef i ne El ephant block,
and followed by anAB, RD Wait 2.5 RD. Thisdefinesaprocedure called El ephant
which tells motors A and B to reverse direction for 2.5 seconds and then reverse back to
their original motion.

The fourth procedure is on the top right. It is headed by adef i ne Cheet ah block, and
followed by f A If B then [El ephant Snake] . Thisdefinesa procedure caled
Cheetah that when run will check to seeif Sensor A ispushed, then Sensor Bis pushed
and then run the EI ephant procedure, then run the Snake procedure. This procedure
causes the LEGO car to roll backward for 2.5 seconds and then turn right for 2.5 seconds
(by leaving motor A on and turning B off.) Then it resumes normal forward motion. Since
Cheet ah’sfirst statement is a sensor block, it is called with awhen, instead of a

wai t unti | . The difference isthat when runsforever, whilewai t unti | only runs once.
When Cheet ah isfinished, it will automatically restart.

Thelast procedureis called Cow. It is headed by adefi ne Cowblock and followed by a
cal to Spi der and acadl to Cheet ah. Thisfunction, when run, will turn on the two motors
and start the LEGO car forward, and then run Cheet ah to check if it collided with awall
and back up and turn away from it.

3.2 Blocks

LogoBlocks would need several different types of blocks. There would be action blocks,
sensor blocks and variable blocks. Action blocks could control motors and “do” operations
likewai t andr epeat . Sensor blocks would implicitly combinei f statements with sensor
readings(i.e.if sensora < 45 [onfor 5]), Variable blockswould enable usersto
plug in numbers to functions that required them, like onf or andwai t andr epeat . (show
pictures of blockswith each heading) All of the blocks are identified by a unique shape and
atext description that is drawn inside each one. Since there are many different primitives to
be represented but limited pal ette space, the user only sees nine blocks from which to
choose. Each block has severa predefined meanings that the user can select. After he has
dragged a block onto the workspace, he may press control or option and click on the block
to cycle through these different definitions. Sensor blocks, action blocks, one-input action
blocks, variable blocks and procedure blocks respond to control-click. Analog sensor
blocks, variable blocks and procedure blocks also respond to option-click for an orthogonal
definition cycle. Two-input action blocks (of whichr epeat isthe only one) don’t respond
to control or option click.

13

3.2.1 Action Blocks

Action blocks are the primary actuator in LogoBlocks. These would include a motor
sdectionblock (a, b, ¢, d, ab, bc, cd, abc, bcd, abcd,), amotor control block
(on of f), several motor direction blocks (rd t hi sway t hat way), severa timer blocks
(for program flow control) (wai t onf or), and arepeat block (r epeat). Action blocks are
roughly rectangular, but have rounded edges.

3.2.1.1 Action

There are severa different action blocks that take no inputs. These include the motor
selection block, the motor control block and the motor direction block. To control a motor
on the Brick, you must first addressit, or talk to it. In BrickLogo this is done with the
command a, orb, orab, whichwould talk to motor A, motor B or both motor A and
motor B, respectively. After you designate a motor, you can then turn it on or off using the
on/ O f block. (Foo/ Bar / Moo isthe convention | will use to show the different definitions
ablock has. To switch among the meanings, the user would control-click on the block.)
Once the motor is on, you can change its direction with thet hi sway/ t hat way/ r d block.
Thi sway andt hat way are the two directions that a motor can spin on the Brick. (you might
ask, why thisway and thatway and not forward and backward? Forward and backward
have too much meaning as specific directions. Depending on how the motor is placed in the
Lego creation, when you say forward, the creation might actually move backward). rd
reverses the motor’ s direction. To switch among the meanings on action blocks, control-
click on the block.

3.2.1.2 One-Input Action

There are also program control blocks which take one variable block asinput. The

Onf or / Wai t block isthe only one-input action block in LogoBlocks. Onf or <val ue/ 10>
turns on the current motor for <val ue/ 10> seconds. Wai t <val ue/ 10> will pause the
execution of aprogram for <val ue/ 10> seconds. Y ou can get the same program from
Onfor 5aswithon wait 5 OFf.

3.2.1.3 Two-Input Action

There are a so action blocks that take two inputs. Repeat blocks are the only instance of
these in LogoBlocks. Repeat blocks take avariable block and an action/sensor/procedure
block asinput. Repeat implementsthe Logo commandr epeat <nunoftimes> <li st -

t o- r un>. Repeat will execute a sequence of blocks <nunof ti mes> times. Thisway you
can make loops to continually do an action over and over again. By plugging in avariable
block into the top-right of the repeat block, you specify <nunof t i mes>. Putting another
block in the bottom-right of repeat specifies the beginning of the block of code that it will
run. Normal parsing rules hold intherepeat <l i st -t o-run>. (Parsing ruleswill be
explained in alater section.)

3.2.2 Sensor Blocks

Sensors on the Brick are the primary way of getting real-world information to your
program. There are two types of sensors, digital and analog. Digital sensors are either on
or off. (i.e. push buttons, sound sensors, break-beam sensors, etc...) Analog sensors, on

14

the other hand, can have values from 0 to 255. (i.e. light sensors, sound sensors, bend
sensors, heat sensors, etc...) Sensor blocks are oval in shape.

Sensor blocks are used for program control in LogoBlocks. They would correspond to the
when and thewai t unti | statementsin BrickLogo. If the sensor block comes at the head
of acluster of blocks or isthefirst block in aprocedureit isinterpreted asawhen. If it
comesinthemiddle, it isinterpreted asawai t unti | . Wien runsthe cluster of blocks
forever, whenever the predicate istrue. Wai t unt i | waitsuntil the predicate istrue, but
only runs the cluster once. If we want a program to wait until some sensor value matches
some predicate, we would use a sensor block.

3.2.2.1 Digital Sensor

Digital sensors have two constructs: i f Sensor A, and i f not Sensor A. Thisalows you do
control your program based on a push button. When your program hits adigital sensor
block it will wait until the sensor is activated. (i.e. If the button is pushed, do the next
program block sequence.) If you usei f not Sensor A, your program will wait until the
button becomes unpressed and then do the next program block sequence. Since there are
three digital sensor ports on the Brick, the digital sensor representation is

i f Sensor A/i f Sensor B/ i fSensorCifnotSensorAifnot SensorB/ifnot SensorC.

3.2.2.2 Analog Sensor

Analog sensors have more constructs. They canbei f Sensor A < <nunber>, i f

Sensor A > <nunber>, Ori f Sensor A = <nunber >, where <nunber > isavariable
block. Since the analog sensor values fluctuate over time, each command will wait until the
specified condition is true and then continue with the execution of the blocks. The user may
cycleamong sensors A, B, C, D, E and F by control-clicking the sensor block. By option-
clicking the block, he can change whether the block respondsto >, < or =.

3.2.3 Variable Blocks

3.2.3.1 Number Variables
Number blocks are the only variable blocksin LogoBlocks. Numbers are shaped like

cartoonish arrows. Whenever some action block or sensor block needs a number as input,
the number block will do the job.

Numbers can be modified to change from 0 to 255 by pressing control and clicking the
mouse. Y ou change the number in increments of ten by option-clicking the block. When
used with ar epeat block or a sensor block, the number isinterpreted literally, but when
used with atimer block (onf or / wai t) the number isinterpreted as tenths of a second. (So
the longest interval of time to wait with onewai t block is 25.5 seconds)

3.2.4 Procedure Blocks

In order to implement procedural abstraction, procedure blocks are used. They arein the
shape of folders with animal textures. By holding down control and clicking the mouse,
you can cycle through seven different animal shapes. Procedures are named by seven

15

different animal names. The procedure block’ s representation in LogoBlocksis
Spi der / Snake/ El ephant / Cow Cheet ah/ Zebr a/ Canel .

If you want to define a new procedure, you option-click on the procedure block to turn it
into adef i ne block. Then you placeit at the top of the cluster you want to define. The rest
of the cluster is“called” by that procedure block. If a procedure block without turning it
into adefine block, it performs afunction cal to the procedure defined by that animal
texture. LogoBlocks optimizestail recursion calls. If the procedure object is the last block
in acluster, it will consider the block a*“goto” instead of a procedure call. Thislets you
program infinite loops.

The Brick has seven menu items that are presented upon turning it on. The user can select
among these with a knob and press a button to run them. When the user downloads their

L ogoBlocks program to the Brick, each procedure that was defined will show up as an item
in the menu. So if | had defined Cheet ah and Zebr a, menu items one and two on the Brick
would say Cheet ah and Zebr a.

3.3 Interpretation

A typical program in LogoBlockswould consist of several blocks attached to each other to
form asort of cluster. How is aparticular block identified to be in aparticular cluster? How
isthis cluster identified as separate from other clusters? Once the cluster has been
determined, how does one parseit?

3.3.1 Cluster Analysis

The technique used in LogoBlocks to determine which blocks belong in acluster isthe
brute-force agorithm. The bounding region for each block is expanded outwards by two or
three pixels. If it intersects any other block’ s region, then it is considered to be touching
that block. The block that it is touching and the direction from the center of the first block is
noted in alist. Thisisthen repeated for each block in the list of touching-blocks. When
there are no more blocks found touching that have not already been explored, the cluster is
finished and returned. The cluster isalist of blocks, where each block has alist of all of the
blocks that touch it and their directions from the center of the block.

3.3.2 Form and Parse Spanning Tree

Once the cluster is determined, the top-left block in the cluster is chosen. Parsing proceeds
from top-left to bottom-right, where precedence is given to the block on the right. Each
type of block has a different method for parsing.

An action block will look for ablock on its right, and recurse on that block, then look
for ablock under it, and recurse on that block. Then it returns its own action followed
by the result of the right block then the result of the bottom block.

An one-input action block will ook for a number variable onitsright. If oneis not
there, an error issignaled. If oneisthere, it notes the number on the block, and then
recurses on the number block. Then it recurses on the block underneath it. It finally
returns its own command followed by the number, and then the result from the number
block recursion followed by the bottom block recursion.

16

The repeat block (the only instance of a two-input action block) will look to itstop right
for anumber block. If it does not find one an error issignaled. Then it records the
number, but does not recurse on the number block (thisis due to space considerations
on-screen. There is not enough room to put a block on the right of the number block
and not have it touch the block in the list-to-run dot of the repeat block.) 1t then looks
for ablock in its bottom right slot, and recurses on that. If oneis not found, an error is
signaled. Then it looks for a block underneath it and recurses on that. It finally returns a
form (repeat <nune <list-to-run>) <rest-of-code>.

A digital sensor looksto its right for a block and recurses on that. It then looks
underneath for ablock and recurses on that block. It then returnsits own definition
(ifAorifnotA, etc...) and then the result from the right recursion and then the result
from the bottom recursion.

An analog sensor looks to its right for a number block. If it doesn’'t find one, an error is
signaled. It records the number and then recurses on the number block. It also recurses
on the block undernesath it, if any. Finally it returnsitself (i f A< ori f B>, etc...) the
number, then the result from the number block recursion and the result from the bottom
block recursion.

A number block merely looksto itsright for another block and if it finds one it recurses
on it and returns the result from that.

A procedure block recurses on the blocks to the right and bottom. If it isadef i ne
block, it returnsdef i ne, then the animal texture name, and then the result of the right
then bottom recursions. If it is not a define block, it does the same but omits the

def i ne at the beginning.

3.3.3 Logo -> P-Code

Once the graphics have been parsed, the result is something that looks very much like
BrickLogo code. Thisisrun through a compiler that trandates this code into postfix code
that the Brick can understand. Each command has been parsed into its own list for ease of
compiling.

The compiler starts at the beginning of the Logo expression and seesif thefirst elementisa
define. If itis, thenit will create anew procedure object with the define’ s name. If the
first block, not counting the define block, is a sensor, then awhen form is used to define
the sensor. When is a BrickL ogo function that launches a thread to loop, waiting for the
sensor predicate to return true and run the function. When the function has finished
running, the loop will start over again.

Most other commands are checked for proper numbers of arguments and are converted into
postfix form. Numbers are converted into alow-byte and high-byte form (since numbers
are 16 bits and serial transmission is an 8-bit protocol). If asensor isfound inside aLogo
expression, and not at the top, it istrandated into awai t unti | form.

If adefi ne comesinthe middle of aprocedure, an error issignaled. If aprocedureis
called from the end of another function, atail recursion function call is used instead of the
normal stack based function call. If aprocedure is defined twice by two different clusters,
the one that is defined last will win. In order that the Brick doesn’'t crash if an undefined
17

function that is called, null definitions will be generated for any undefined procedures at
download time.

3.3.4 Download to Brick

The resulting postfix P-Code is then downloaded to the Brick. The Brick has seven menu
itemsthat reside in a particular memory address. The downloader sends the names of the
procedures and the pointersto their addresses to the menu memory. It then downloads the
rest of the code to the data memory of the Brick. The Brick isthen reset, and the menu is
shown. If no procedures had been defined, then the last expression downloaded would be
run.

18

4. Discussion

4.1 Implementation

LogoBlocks was created in Macintosh Common Lisp 2.0.1, produced by Digitool, Inc.*®
Thiswas anatural choice due to two reasons. Thefirst isthat Logo isadialect of Lisp,
thereforeit is a straightforward process to make a compiler for Logo. The second isthat |
have been programming in Lisp since | took 6.001, and find it very easy to prototype a
project like thisvery quickly.

4.2 History

The project went through afew different revisions. It was started by Albert Castillo in May
1995 for his Course VI AUP. He implemented a simple proof-of-concept system where all
of the blocks had a rectangular shape (all the same size) and they would snap to a constant
grid. Functions that took arguments were special cased to include a number inside the text
for the block. Blocks were interpreted from the top down and could not be placed next to
each other. Blocks were selected from a pal ette on a separate window. To move a block
from the palette to the workspace you would click on the object in the palette and click on
the place in the workspace that you wanted it to go.

| decided to reimplement LogoBlocks from scratch during the summer of 1995. | removed
the size and shape constraint on the blocks and added a snap-to feature to make the blocks
fit together. (to be discussed in next section). | also added specific blocks for variables and
made a plug-in style architecture for putting blocks together. | aso added drag-and-drop
capabilities from the palette bar to the workspace. To add a block now, you drag it off the
palette and onto the workspace. Another addition was to used double-buffered graphics for
object dragging because it was a more concrete representation of what the user was actually
doing when moving the blocks. | also added the ability to select several blocks and move
them in tandem. Another addition was the ability to parse in a 2-dimensiona way instead of
just down or across. The parser will follow the blocks across and down in any particular
configuration.

4.3 Visual Cues

4.3.1 Key in Lock

In order to make function arguments more apparent to the user, any block that requires a
variable has a cutout in the shape of the variable that will fit there. In this version of
LogoBlocks there are only number variables, which are shaped like arrows. Every block
that requires a number has an arrowhead cutout where the arrow fitsin. The repeat block is
special and has a cutout in the shape of an action block, which startsits<l i st -t o-r un>.
Other objects may be put here, such as a sensor block or a procedure block, but the point is
that alarge block must fit in the space. Thistype of visual cue for variable insertion isnice
compared to atextua language where the presence of a function name does not necessarily
imply that it requires any argumentsat all.

4.3.2 Snap Into Place

19

In removing the grid from the first version of LogoBlocks, it was noted that some form of
snap-to behavior was desired. Using atwo-dimensional table, every type of block was
taught how to snap-to each other type of block based on its proximity and location. A
number variable near the right side of an action block with a number input would snap into
place. Two action blocks brought near each other would snap next to and align themselves
with each other. If an object didn’t belong, such as anumber object next to a action block
with no inputs, it would just sit there and not move. In thisway it was possible to see a
very good cue for where certain blocks “were willing” to be placed.

4.3.3 Program Flow

Seeing aprogram laid out in multiple colored blocks is very nice way to see instruction
flow. Another advantage to the visual layout is that you can envision parallel programming
easily. If you have two stacks of blocks next to each other, they can both run at the same
time. Thisisan improvement over textual languages where two parallel threads might bein
two totally separate areas of the sourcefile is not readily apparent which code, if any, is
currently executing.

4.3.4 Multiple Pages

The “Deutsch Limit” on screen legibility was aconcern in LogoBlocks. To alleviate some
pressure, multiple pages were added to the workspace. Blocks would now reside on a
particular page, so you could have a page for aparticular procedure definition and call the
procedure from another page.

20

5. Conclusion

5.1 Fun and Simple

One of the goals of LogoBlocks was to make it fun and simple to use. | think that it has
achieved these goals. LogoBlocks is colorful and has a nice tangible feel to it which makes
the user fedl that he is actually manipulating real blocks to put together a program.
Graphical programming is definitely going to come into its prime for children’s
programming soon.

5.2 Expressive

LogoBlocks also had to be expressive. There would be no use to using LogoBlocks if you
could not do anything useful with it. Looking at the sample program in section 3.1.1, you
can see that a program that executes asimple wall avoidance algorithm encoded in afew
blocks. Many LogoBlocks programs are this small and simple, and can generally do the
tasks that the user wishes.

5.3 Functionality

LogoBlocks lacks something in the area of functionality. Users have found it difficult to
advance beyond simple programs to enact more complex behaviors. In the next section, |
discuss possible directions for LogoBlocks to movein to aleviate some of the problems.

5.4 Future Directions

5.4.1 Encapsulation

There are two types of encapsulation envisioned for LogoBlocks. The first is procedural
abstraction, which was implemented using procedure blocks. Instead of using a special

def i ne form to make afunction, a procedure block could be a container for a program
cluster. Allowing procedures to be embedded inside of an another block would be a
syntactically and metaphorically clearer representation for afunction. This encapsulation
would alow the user to “compress’ his program into a representative block which the user
could use wherever he wanted. The second form of encapsulation is object encapsulation.
Thiswould be used to represent sensors and motors as containers for program clusters that
would affect how each one operated.

5.4.2 Shapes and Textures

Asmy painting and art skills are not high quality, | only added ssimple shapesto
LogoBlocks. One area for improvement would be to have more shapes and different colors
and iconic picturesto represent different functions and primitives. Ideally, thisidea
combined with the object encapsulation could really turn LogoBlocks into something
extremely functional. One design issue would be how to maintain the block palette. If there
are too many different types of blocks, screen real estate on the pal ette becomes an issue.
Some notion of hierarchy could alleviate this problem. An possible solution isfound in

21

Fractal Design Dabbler, where different categories of painting tools are kept in separate
drawers on a palette.

5.4.3 Function Arguments and Return Values

LogoBlocks lacks function arguments and return values. Arbitrary user defined functions
don’t take arguments. Parameterizing functions adds much desired complexity and
generalizability to acomputer language. An astute observer would also notice the lack of
mathematical operator blocks. Thisis because no block can currently give an output. One
ideafor the representation of an output isto have aplug (like in acanister vacuum cleaner)
that can be pulled out and plugged into another object as an input. A string would connect
the two so the connection would be visible. One problem with this could be many lines
cluttering the screen. However, with object encapsulation and proper abstraction, this
distraction could be kept to aminimum.

5.4.4 Branching Program Flow

Another missing featureisthe i f el se statement from Logo. This would be an obvious
win. Right now, a LogoBlocks sensor block will block until the predicate istrue. The
branching program flow brought upon by anii f el se block could be represented easily. If
the predicate is false, follow one set of blocks. If it istrue, follow the other.

5.4.5 Computer Simulation of Brick

Thelast desired feature for LogoBlocks would be away to smulate the Programmable
Brick functionality. This could take the form of a graphic of the Brick with lights
representing different motors and pictures of sensors. As your program executes, each
block would highlight in turn and its effect on the Brick would be detailed on the picture.
Thisway you could “debug” your program without needing trying it out physically. Y ou
could also connect up your Programmable Brick, run your program and have the on-screen
picture of the Brick receive rea-time feedback from the physical one. An even loftier idea
would be to make an electronic version of the Brick’ s environment and LEGO creature and
have it travel around in aenvironment created either entirely in software, or asamix of
real-time input (from avideo camera, for example) and computer graphics.

End Notes

! Mclntyre, David. Burnett, Margaret. Comp.Lang.Visual FAQ.
ftp://rtfm.mit.edu/pub/usenet/news.answers/visua -lang/fag. April 22, 1996.

2 Elliot, Robert C. Visual Concurrent Languages Bibliography.
http://cuiwww.unige.ch/eao/www/Visual/Concurrent.V L .biblio.html. December 16, 1990.

8 Pictorius, Inc. The Home of Visual Object-Oriented Development Environments.
http://www.pictorius.com/home.html. May 16, 1996.

22

* Lieberman, Henry. Programming by Example Home Page.
http://lieber.www.media.mit.edu/peopl /lieber/PBE/index.html.

5 Cypher, Allen. Kidsim. http://www.atg.apple.com/Allen_Cypher/Kidsim.
® Repenning, Alex. Agentsheets http://www.cs.col orado.edu/~13d/systems/agentsheets.

" Mclntyre, David. Comp.Lang.Visual FAQ. ftp://rtfm.mit.edu/pub/usenet/news.answers/visual-lang/fag.
April 22, 1996.

8 Epistemology and L earning Group. http://el.www.media.mit.edu/groups/el.

° Epistemology and L earning Group. LEGO/L OGO.
http://el.www.media.mit.edu/groups/el/projects/legologo

1 EGO Group. LEGO Official World Wide Web. http://www.lego.com

" Epistemology and Learning Group. Programmable Brick.
http://el .www.media.mit.edu/groups/el/projects/programmabl e-brick.

126270 Organizers. The 6.270 LEGO Robot Design Competition.
http://www.mit.edu:8001/courses/6.270/home.html.

3 Digitool, Inc. Digitool, Inc. Home Page. http://www.digitool.com.

 Fractal Design Corporation. Fractal Design Dabbler. http://www.fractal.com.

23

