Broadcast-Based Communication
in a Programming Environment for Novices
by
David S. Feinberg

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 20, 2004

Copyright 2004 M.L.T. All rights reserved.

Aut hor

Department of Electrical Engineering and Conmputer Science
May 20, 2004

Certified by

M t chel Resni ck
Thesi s Supervi sor

Accepted by

Arthur C. Smith
Chai rman, Department Conmittee on Graduate Theses

Broadcast-Based Communication
in a Programming Environment for Novices
by
David S. Feinberg

Submitted to the

Department of Electrical Engineering and Computer Science

May 20, 2004

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis proposes a model to make communication and processes in an object-oriented language
accessible to novice programmers. For my thesis work, I developed a broadcast communication
framework in the context of Scratch, an object-based programming language intended for children
and being developed at the MIT Media Laboratory. Objects in this framework can broadcast
events, which trigger other objects to start new processes. In this document, Iidentify the basic
functionality required to support object communication in such a broadcast model, I describe my
implementation of that functionality, and I consider the merits of various user interface metaphors
to make these features accessible to novices. Finally, I compare the event broadcasting in this
model with the use of procedures in more traditional programming languages, and raise questions
as to whether the broadcast model's event handlers should supplement or supplant procedures in a

beginner's programming language.

Thesis Supervisor: Mitchel Resnick

Title: Director of the Lifelong Kindergarten group at the MIT Media Laboratory

ACKNOWLEDGMENTS

There are many people I would like to thank for their contributions to my thesis:

Eric Grimson, for making MIT affordable, by giving me the opportunity to TA for 6.001.

® The Media Lab's LLK group, especially those on designed Scratch--without which it would
have been immeasurably more difficult to add support for broadcasting events in Scratch.

® The Scratch UROPs, for their hard work and contagious enthusiasm.

® Brian Silverman, whose unique perspectives provided the roots for much of my thesis work.

® My thesis supervisor, Mitchel Resnick, who arranged funding and a quiet office for me, trusted
me to work on the Scratch language, always made time for me, kept my best interests and
career in mind, suffered through reading this document, and signed it.

* My mentor, John Maloney, who taught me everything I know about Squeak, and created much
of the original Scratch architecture that became the starting point for my work. Our Seattle's
Best conversations inspired most of the ideas in this document.

® My unofficial thesis expert, Margarita Dekoli, who invaded my office, provided invaluable

suggestions for organizing my thesis, shared crossword puzzles with me, let me snack in front

of her, and became a good friend--even if she is made of coffee.

® Eytan Adar, who listened to my thesis troubles and filled me with ABP discount pastries.

I also wish to thank all the students, friends, and family members that have helped me survive two
unbearably cold Boston winters, and made it so difficult to leave again. Iam especially grateful to
my roommates--Jonathan, who conceals his boredom as I babble about my day, and Jen, who has

been entertaining and ever supportive in our nighttime chats.

[would also like to thank my future roommates, Jackie and Mr. Moustache, who have been storing
up three semesters of craziness for my return. Most of all, I would like to express my love to

Virginia, their owner, who has allowed and encouraged me to go back to school, spent all her

vacation days with me, made sure I graduated, let me come home again to her, and loved me

through it all.

Finally, I would like to thank myself for actually writing this thesis. "I'made this."

CONTENTS

PREFACE ... 9
[. BACKGROUND ..ot 11
II. COMMUNICATION IN SCRATCHO0.1ccooevenenn. 17
III. BROADCASTING EVENTS ..., 23
IV. METAPHORS ... 33
V. IMPLEMENTATION ..., 37
VI. CASE STUDY oot 49
VII. FROM COLORS TO STRINGS ... 55
VIIL.SIMULATING PROCEDURE CALLSc.oooeaean. 61
IX. REPLACING PROCEDURE CALLSccooiiiieae. 69
X. CONCLUSIONS .. 77
XI. FUTURE WORK ... 81
REFERENCES ... e 87

PREFACE

Computer programming can be a powerful medium for children to express their creative ideas.
Every day, URL links send us to entertaining animations and games created by young authors.
Nearly all such projects involve graphics representing cartoon characters, animals, vehicles, etc. In
other words, these projects manipulate graphical objects. The most natural way to bring such
objects to life is through object-oriented programming, in which the program's code mirrors the

graphical object whose behavior is being described.

If we wish to develop an object-oriented language to empower children and novices to create such
animations and games, then we must consider ways to help young programmers to learn advanced
programming topics. One topic at the core of object-oriented programming is the method call--the
means by which an object communicates with others in an object-oriented system. In a typical
method call, the calling object waits while another object performs the requested computation.
However, in an interactive story or game, there are typically several graphical objects, all
simultaneously following their own rules. This means that the corresponding programming objects
are each running one or more processes. Writing programs to choreograph the communication
between such objects involves the starting and stopping of processes, and the intricacies of inter-

process communication.

This thesis presents an intriguing communication model that takes steps toward making these
advanced programming concepts accessible to novice programmers. In this model, objects
broadcast events to trigger other objects to start running new processes. This thesis shows how
such a mechanism can be made accessible to young programmers, and how it can be used to create

the many kinds of behaviors required for the kinds of projects that will be of interest to children.

This document is primarily divided into two parts. In the first part, consisting of chapters 1-6, I
present the broadcast communication model that is the focus of my work. This work was

developed in the context of Scratch, a programming language intended for children and being

developed at the MIT Media Laboratory. Chapter 1 presents some background information on the
Scratch project, and chapter 2 describes how objects communicated in an early version of the
Scratch programming language. Chapter 3 then presents the basic functionality of the broadcast
communication model, and chapter 4 proposes various user interface metaphors to make this
model more accessible to novice programmers. Chapter 5 explains how this model was

implemented, and chapter 6 explores a simple same developed using broadcast communication.
P) P P ple g P g

The second part of my thesis, chapters 7-11, pushes the broadcast model much further. I consider
this part to be a response to the first. Chapter 7 describes how my simple game demonstrated a
need to allow programmers to invent names for broadcasted events. By using string names for
events, however, I encountered a significant tension--the broadcast functionality I added began to
resemble the procedure-call functionality already supported by Scratch. Although these
mechanisms were designed to solve different problems, their largely overlapping functionality
would be a point of confusion for Scratch users. Therefore, chapter 8 describes how the broadcast
model can be used to simulate procedure calls, and chapter 9 considers the merits of replacing the
procedure-call mechanism altogether. In Chapter 10, I summarize the key questions raised by my
thesis work, and present my answers to those questions. Finally, chapter 11 describes my
suggestions for future work in using a broadcast model for object communication in a

programming language fOI‘ novices.

10

. BACKGROUND

The Value 0fC0mputer Programming

Research has shown that children learn best through creative explorations in which they design,
create, and invent things they care about [Resnick, Rusk, & Cooke, 1998]. Seymour Papert coined
the term " Constructionism" for this educational philosophy [Papert, 1993]. It suggests that we can
aid in a child's learning by providing tools and media that are engaging in addition to being
educational, and that support a wide range of creative possibilities, opening new opportunities for

children to create and to reflect on their creations.

Computers are such an educational medium because they offer ways to create, design, and invent--
especially through the use of programming languages. Children can use programming as a means
to explore complex creative ideas by making artwork, presenting stories, developing games, etc.
As Papert observed in his book "Mindstorms: Children, Computers, and Powerful Ideas", the
computer can play a number of educational roles [Papert, 1980]. In programming computers,
children learn to "speak mathematics", using arithmetic and geometry in order to reach the
authentic goals they set for themselves. Programming also serves as a concrete introduction to
formal and abstract reasoning. And, in telling the computer what to do, children learn to think

formally about their own thinking.

Some people feel that you do not truly understand an idea until you can teach it. Programming
provides endless opportunities for a child to "teach" their ideas to the computer. And in correcting
program errors, children learn the powerful metacognitive skill of debugging their own thinking

[diSessa, 2000; Kay, 1991].

The Logo programming language was created by Papert and his colleagues for children and other
novices. The language features an on-screen object called a "turtle" that the programmer controls
in order to create interesting shapes and patterns. By imagining themselves moving along the

turtle's path, children are able to learn abstract geometric concepts [Papert, 1980]. Although once

11

met with widespread excitement, interest in teaching children to program has waned over the
years. This decline reflects the limited success that educators have had in introducing children to
programming. Some researchers feel that such attempts to teach children to program have focused
too much on programming languages that are difficult to learn and that do not easily support

activities that connect with children's interests.

Lessons from the Computer Clubhouse

One environment where children can use the computer as a creative medium is provided by the
Computer Clubhouse. Started in 1993, the Computer Clubhouse is an international network of
after-school centers in under-privileged areas, where kids between the ages of 10 and 18 can go to
engage in computer-related activities in their free time [Resnick, Rusk, & Cooke, 1998]. One of
the most successful activities has been the creation of computer artwork. In fact, a kind of
"Photoshop culture" has emerged, with members actively exchanging how-to tips and sharing their
creations. Unfortunately, computer programming has had only scattered success in the
Clubhouses, and no such "programming culture" has developed [Resnick, Kafai, & Maeda, 2003].
Only a limited number of members have created projects using Flash or Shockwave, and some have

been exposed to MicroWorlds Logo.

One possible obstacle preventing a programming culture from emerging could be the difficulty of
learning a programming language--perhaps because of complicated syntax rules or inappropriate
primitives. Another hypothesis is that those programming languages that are easier for children to
learn (those with a "low floor", such as Logo) have not allowed children to create projects they
find engaging. These beliefs have led to the conception of the Scratch programming language

[Resnick, Kafai, & Maeda, 2003].

12

Introducing Scratch

The goal of the Scratch project [Resnick, Kafai, & Maeda, 2003] is to develop a graphical

programming language that is easy to learn and will connect with children's interests, particularly
through the use of multimedia and sensory input. It is hoped that Computer Clubhouse members
(and hopefully many others) will be excited to use Scratch to create Flash-like animations, games,

etc.

Scratch features moving objects that support various multimedia, including images, movies, and
sounds. Children will be able to manipulate images by programming their own filters, build sensor
devices to direct movie playback, and control object movements from mouse input. Scratch brings
together ideas from three successful programming languages in the educational technology
community--MicroWorlds Logo, EToys, and LogoBlocks. The Scratch programming language
(especially its primitives) is based on Logo, and features an environment like MicroWorlds in

which multiple objects (similar to turtles) can move around and interact with each other.

Like EToys [Steinmetz, 2001], Scratch is developed in Squeak (an implementation of SmallTalk)
[Guzdial, 2001], and hence shares many features with EToys (such as creating an object
automatically when the user draws a picture). Also like EToys, Scratch is programmed by dragging
and dropping blocks (instead of typing). However, the way in which the blocks snap together to
form programs more closely resembles the Lego-inspired LogoBlocks software [Begel, 1996].
Unlike its predecessors, Scratch is strongly integrated with various multimedia. The intention is to
encourage Computer Clubhouse kids to create multimedia projects similar to those they have

developed using applications like PhotoShop, but with the added power of programmability.

One significant departure from Logo concerns the connection between objects (or turtles) and the
programs associated with them. Logo is a procedural language, in which the programmer adds
procedures to a single code repository. These procedures issue instructions to Choreograph the

behaviors of the various objects. On the other hand, in using an object-oriented programming

13

language, the programmer focuses on the data (objects), and the procedures detailing the behaviors

associated with a particular object are built directly into that object's declaration.

The Scratch Programming Environment

The following graphic shows the upper portion of a screenshot from the March 16, 2004 image of

Scratch.

Looo m o L |
|— Command Palette —| |7 Script Pane | | Wortld Pane {
Scratch Screen Layout

The screen is divided into three main regions, which I will refer to as the command palette, script

pane, and world pane. The world pane is the stage upon which the characters interact. The
rograms that govern those interactions appear as scripts (also sometimes referred to as procedures

prog g PP P P

on the script pane, and the blocks that make up these scripts are dragged out from the command
alette. These three regions appear on the screen at all times, rather than popping up in dialogs.

P g PP poppmg up g

This way, the key aspects of the Scratch development environment are visible to the novice user

from the beginning.

In the project shown, the user has created a script called "run in a circle", that tells the "cat" object
to (1) move forward a distance of 10 pixels, (2) turn right by 10 degrees, and continue to run these
two commands "forever". We refer to the top block, labeled "run in a circle", as a script hat, used
to give a name to the script's behavior. Invoking the "run in a circle" procedure causes the cat

object to trace out a circular path in the world pane. During this time, a green indicator appears

14

on the script to indicate that it is currently running. Scripts and script hats will play a prominent
role in this document, because the object communication models we will be considering are

intimately connected to how scripts are invoked.

Scratch is an interactive language like Lisp or Squeak, in which there is no clear separation between
compile-time and runtime. The programmer frequently makes changes to a script while others
continue to run. In fact, Scratch exhibits a deeper "liveness" than Lisp or Squeak, because the
programmer does not create classes to be instantiated later. Rather, the programmer is always

conjuring up and manipulating live objects.

Scratch Objects

Although the work for this thesis pertains to Scratch objects associated with various types of
multimedia, I will restrict my examples to simple objects that appear as an image moving and
interacting in the world pane (like the cat object shown earlier). As in other object-oriented
languages, a Scratch program consists of a number of objects. However, in an effort to make
programming easier for novices, Scratch does not feature certain characteristics of other object-
oriented languages like C++ and Java. First, the objects in Scratch can contain procedures
(scripts) and data (a number of fields with changing values), but they cannot contain other objects.
More significantly, programming in Scratch does not involve classes or their associated
complexities. Every object is the sole instance of the code describing it. (Objects can be copied,
but the "instances" are not connected in any way.) As a result, Scratch does not support user-
defined types, inheritance, full polymorphism, and other object-oriented features related to

classes.

A key aspect of Scratch toward fostering a programming culture is that objects created by one
programmer can be shared with others. Hence, we imagine that a child may find a dog object in a
library, and modify it to be able to follow its owner around. Then the child could export the

"following dog", and another kid could use it as part of their video game.

15

Although support for sharing Scratch objects had not been implemented (as of this writing), it is
helpful to imagine the sharing of a Scratch object as involving taking a live Scratch object (one that
appears in the world pane and may be associated with running scripts) from one project and
moving an unborn copy of it (one with no processes running) into a library of objects. The copy
has fields and scripts that are identical to the original. Its field values match those of the original at
the time the copy was made. (It is possible that some field values should be modified when the
object is exported to the library. For example, x- and y-coordinates may no longer be meaningful.

Furthermore, it may not make sense to retain the values of any fields that refer to other objects.)

16

. COMMUNICATION IN SCRATCH 0.1

One of the core challenges we faced in developing Scratch concerned how objects communicate
with each other and with themselves, through the calling of procedures and starting of processes.
Before we can discuss the broadcast communication model that is the focus of this thesis, it is

helpful to understand the earlier Scratch communication model that led to it.

In 2003, we developed a novel communication model that allowed any Scratch object's script to
invoke any other object's primitive commands and scripts. Furthermore, when invoking a script,
the programmer could choose to start it in a new process. I will refer to this 2003 version as
Scratch 0.1, to distinguish it from the current version of Scratch and from the hypothetical versions

considered in this document.

Hard-Wired Blocks

A core feature of the Scratch 0.1 communication model is that nearly all program blocks contain
hard-wired references to the object they influence. This feature allowed the user to program one
object to influence the behavior of a second object simply by including blocks from that second

object inside the first object's scripts. Look at the following sample programs:

A cat i owner

- #® boss cat around
spin repeat 10 cat, spin
forward | wridth | | turn |H| cat, forward | cat's width |

- 1
The Cat's Program The Owner's Program

The cat object's program shown was created by dragging blocks from the cat's command palette

into its script pane. Concealed in each of these blocks is a reference to the cat object. When the

17

cat's "frolic" script is run, the "spin" block knows to call the cat's spin script, then the "forward"
block knows which object to move forward, and the width variable knows which object's width to
report. The owner object's program above was created by placing the same blocks (from the cat's
command palette) inside the owner's script (in the owner's script pane). Because of the potential
for confusion with hard-wired blocks, Scratch labels each block explicitly with the name of the cat
object. Running the owner's script causes the cat to behave exactly as if the "frolic" script were

run.

In the Scratch user interface, when you want to look inside one of the objects in the world pane,
you double-click it, prompting the command palette to show blocks relevant to that object, and
the script pane to show that object's scripts. Therefore, the command palette and script pane
typically show elements for the same object. However, in order to drag the cat's "forward" block
(for example) into the owner's script, the user must request to view the cat's blocks in the

command palette and the owner's scripts in the script pane at the same time.

Unfortunately, it is unlikely that the user would think to do this, or that there should be an obvious
user interface gesture to initiate the situation. And, should the user succeed in finding this gesture,
the display will enter the confusing state of showing details for two different objects at the same
time. This scenario represents a typical programming need in Scratch, and is therefore cause for

some concern with the hard-wired block model.

A larger concern involves shareability. A basic requirement for Scratch is to be able to share any
object across projects. This means that no object can require the presence of another specific
object in order to function. In early user testing, we found that the Scratch 0.1 communication
model had the unfortunate effect of encouraging users to create projects in which the various
objects' scripts heavily cross-referenced each other. In our example, the owner object could not be
moved into a project without the cat object, since the blocks in the owner's script contain hard-
wired references to the cat. It would make little sense to share the owner or any object that is

similarly hard-wired to potentially absent objects. We must therefore consider alternative inter-

18

object communication models, in which an object is not granted full access to another object's

behaviors.

Explicitly Calling Procedures and Starting Processes

We will now take a closer at the procedure call used in the cat's program. The yellow arrows in

the following diagram have been added to show the flow of control when the "frolic" script is run:

W cat

Control Flow for a Procedure Call

First, the indicator on the "frolic" script hat turns green, to show that there is now a process
associated with this hat. Next, the "spin" block (representing a call to the "spin" procedure) is
reached, and control abruptly jumps to the spin script. When execution of that script has
completed, control returns to the calling script ("frolic") and the "forward" block is executed.
Finally, having reached the last block in the script, Scratch turns off the "frolic" hat's indicator
light, and execution terminates. Notice that, in the course of these events, the indicator on the

"spin" script never turns green.

19

We also wanted one process to be able to cause a procedure (like "spin") to start running in a new
process. Then, the new process would run in parallel (simultaneously) with the remainder of the
original one. Although our experience in developing programming languages had shown that the
ability to run multiple processes was a powerful and important concept even for a beginning
programming language, we were concerned that the idea of processes would be potentially too
advanced and elusive for novice programmers. We did not want a Scratch user to face the
complexity of processes as they appear in traditional object-oriented languages, in which the
programmer creates, runs, and keeps track of processes by identification numbers or references to
special process objects. In such languages, several processes can be running the same script
simultaneously--a feature that would make it difficult to show the user what processes are currently

running in Scratch.

We therefore decided that the simplest solution would be to associate each process with a script
hat, and not to allow any hat to have more than one process. This way, the script hat can indicate
if the process is running, and the script's name can be used to identify the process unambiguously
inside a program (in case we want to stop it or test if it is running). In the unlikely case that you
needed to have an arbitrary number of processes running the same script, you could make many

copies of the same object, each with a process running one copy of the script.

In the Scratch 0.1 procedure call example earlier, there is exactly one process involved, and
therefore there is exactly one script hat ("frolic") whose indicator has turned green. In order to
program the "frolic" script to start the "spin" script in a new process, the user grabs a "spin" block
and indicates that it should start a process, as opposed to invoking it as a procedure call. In our
interface, the user right-clicks on the "spin" block, and a pull-down menu appears as shown below.

The user then selects "start script", and the block's text changes to read "start spin".

20

call soript
tart soript
top soript ‘

2cript if runhning

Choosing to Start a Process

The following diagram shows the control flow when the user starts this modified "frolic" script:

St cat

Control Flow for Starting a Process

When the "frolic" script is started now, the "frolic" hat's indicator turns green to show that it is
now associated with a process. This "frolic" process then reaches the "start spin" block, which
forks off a new process to start the "spin" script. At this time, the "spin" hat's indicator turns
green, showing that it too is now associated with its own process. From here, both processes run
in parallel, with the "frolic" process continuing to run the remainder of the "frolic" script (the
forward block), and the "spin" process running its "repeat" block, seemingly at the same time. As

each process completes, the light on the corresponding hat turns off.

21

Although this explicit means of starting processes is elegant and innovative in some ways, it was
ultimately felt that the model was potentially too confusing for a novice programmer. In
particular, it felt surprising that a script hat's indicator could be green even when the process was
running in another script (one whose script hat indicated it was not running a process). Consider

Scratch's behavior when Mr. Crazy's "astonish" script is started in the program below:

. Mr. Crazy
Peestnis JR - vorsic JR *cotice
start confuse | forever foreven

baffle . forward |H| " turn |H|

Process Confusion

First, only the "astonish" process is running, and therefore the "astonish" hat's indicator is green.
Then the "start confuse" block spawns a new "confuse" process, and the "confuse" hat's indicator
turns green, too. The "confuse" process will continue to cause Mr. Crazy to turn forever. The
"astonish" process now calls the "baffle" procedure, moving the "astonish" process's control into
the "baffle" procedure (where it will remain, since the "baffle" script never returns from its
forever loop). Therefore, the "astonish" script remains green, but the "astonish" process is
running inside the "baffle" script, which does not turn green. This behavior stands in sharp
contrast to the behavior of the "confuse" process, which remained safe in the confines of the script

with the same name.

Would a novice programmer understand the reasons for this surprising and seemingly inconsistent
behavior? These concerns ultimately led us to consider alternatives to starting processes in this
explicit manner, which seemed too much like cloaking professional computer programming
languages in drag-and-drop blocks. We began to search for a more innovative and intuitive way to

introduce parallelism to novices.

22

[l. BROADCASTING EVENTS

Alternative Communication Models

Growing concerns about the lack of shareability and confusing nature of processes in Scratch 0.1
led us to consider alternative models for object communication. One possibility would be for
Scratch to take a more traditional object-oriented approach, invoking methods on variables that
refer to objects, rather than hard-wiring all program blocks with references to the object they
influence. In an object-oriented language like Smalltalk, the compiler will allow any message to be
passed to any variable referencing an object. For example, the Smalltalk syntax "pet spin" passes
the "spin" message to the object stored in the "pet" variable. Only at runtime might the message

fail to invoke a method (if the object in the "pet" variable does not have a "spin" method).

Following this model, imagine a Scratch owner object whose code passes the "spin" message to its
"pet" variable, which currently references the cat object (however that might appear in our
graphical user interface). If the owner is shared and imported into another project, the owner code
will only fail if, when run, the pet variable happens to reference an object that does not support the
"spin" message. Although I did not take this path in my work, we will later see how the broadcast-
based model I explored ultimately evolved into something resembling this standard message-

sending model.

The communication model I considered for my thesis work is one in which objects broadcast
events to each other. This model was selected because it easily supports shareable objects and
because it provides an intuitive way to think about starting processes. For example, in this
paradigm, the cat object may have a script that responds to blue events. Whenever a blue event is
broadcasted, the cat's blue script starts running in a new process. For the owner object to tell the
cat to run this script, the owner must broadcast a blue event. All objects responding to blue
events, including the cat, will run any associated scripts (in new processes). In fact, a significant
benefit of a broadcast paradigm is that it greatly simplifies the code required to trigger many

simultaneous actions--a common usage pattern in our experience so far with Scratch programming.

23

Because Scratch already uses strings to name procedures, we initially chose to use colors to name
events. We hoped that this choice would reduce any possible confusion between the use of

procedures and events.

Artist's Depiction of Objects Broadcasting Events

Of course, one obvious drawback of this model is that now the user cannot designate a specific
object to be the recipient of an event. It is unclear how significant this loss of functionality is.
Although it is possible to devise scenarios where addressing a particular object would be necessary,

we have so far been impressed by how much we can program in Scratch without this functionality.

Because an event serves as an intermediary between objects, our example's "owner" object no
longer explicitly depends on the presence of the cat object, and can now be moved into projects
that do not contain a cat. If no objects in the project respond to blue events, then the event is
simply ignored. It is as if the owner said "spin" in a room full of pets that do not know how to
spin. An enlightened owner should therefore not be surprised when no pets respond. The
broadcast communication model here is ultimately based on our intuition as to what happens when
we make an announcement in a room full of other characters, each potentially responding in a
different way. The remainder of this document will describe the design, implementation, and

analysis of such a broadcast-based object communication scheme in Scratch.

A particularly appealing consequence of the broadcast model is that it provides some of the benefits
of class-like interfaces without explicitly incorporating classes into the Scratch language. Any
object that responds to blue events is essentially an implementation of the blue-event interface. If
we had 10 copies of the cat object, all would respond to the same events. In a sense, it would be as
if they were all instances of the same class. We would therefore have class-like behavior in

Scratch, without the conceptual complications of explicitly creating and maintaining classes.

24

In fact, the broadcast paradigm contains a wealth of powerful computer science ideas. Each object
implementing the blue-event interface may respond to a blue event in a different manner. This
means that Scratch would support a simple form of polymorphism. It also means that novice
programmers will be exposed to the important distinction between an interface (the events an
object listens for) and its implementation (the behavior triggered by those events). And in
choosing how their objects will communicate through events, novice programmers will

unknowingly be developing their own rudimentary protocols.

Event-Broadcasting Model

Initially, we will primarily be considering the problem of inter-object communication. Objects
will still invoke their own scripts using explicit procedure calls, as previously explained, passing
arguments and returning values. On the other hand, we will no longer support explicitly starting
processes in this model. A script will therefore need to broadcast an event in order to start a
process for another script in the same object. Likewise, the only way for objects to communicate
with each other will be through the broadcasting of events. We will no longer support the Scratch

0.1 mechanism of invoking one object's hard-wired command block inside another's script.

So far in this document, we have referred only to user-triggered events (identified by color), but
there are other kinds of events to consider. In particular, we wish to be able to write scripts that
respond to certain key presses and mouse clicks. We have also considered more complex events to
support triggering a script when a certain external sensor value crosses a threshold, or when two
objects collide on screen. However, we feel it is sufficient for now to be able to write a script that

continuously tests for such a condition and broadcasts a colored event when one occurs.

One question that will come up again later in this document concerns our decision to label user-
defined events by color. Suppose we have eight unambiguous colors that users may broadcast.
How often will a programmer wish to create a Scratch project requiring more than eight kinds of

events? A further difficulty with colors is that it is easy to forget the significance of each color.

25

What did we intend by a blue event? We could avoid such problems by allowing the user to use
string names for events. However, using strings might make getting started in Scratch just a little
more difficult for the novice programmer, who would have to consider appropriate names and use
consistent spellings. Furthermore, using strings to name both procedures and events might lead

Scratch programmers to confuse calling procedures with using events to start scripts.

One intermediate option would be to have the user interface suggest colored events by default, but
to allow the more advanced user to designate a string name instead. Ikept in mind this possibility
of later using strings for events as [began to develop the Scratch event system. This is an example
of one of the principles that guided me in designing the broadcast framework: the more common
tasks (like designating eight events) must be easy, and the rest (like using strings to make additional

events) should be possible.

Primitives for Broadcasting and Receiving Events

In discussing the design of the Scratch event-broadcasting system, we will first be concerned with
what functionality is supported. Only later will we consider details of an appropriate graphical
user interface. The block names used in this section should be considered placeholders only until
we are ready to consider various metaphors for presenting the broadcast functionality to the novice

programmer.
Our first new primitive is the "broadcast event" block, which a script can use to broadcast a

colored event. When the programmer clicks on the event icon, a pull-down menu appears for

selecting a color to broadcast, as shown.

26

radio station
'+ dona music

broadcast Ii .
| w ||

Selecting a Colored Event to Broadcast

To program an object to respond to an event, the user associates a script with it, using a new kind
of "when event received" script hat, and selects the appropriate color. (Although I considered
allowing the same hat to respond to more than one type of event, this ultimately did not seem
necessary.) For now, we will leave the old script hat available for creating privately scoped
procedures, but there will be more said about the two types of script hats later in this thesis. The
following pictures show a program in which the radio station object broadcasts a blue event to

trigger the radio object to start spinning:

radio station ﬂ radio

® when [] received

broadecast Ii foreven |

™~ m
Turn |ﬁ
e

Broadcasting a Blue Event Receiving a Blue Event

Scratch's "forever" block (which appears in the radio object's script above) has been a popular
instruction block. It repeatedly executes a sequence of blocks until the associated process is
terminated. Typically, a process is terminated when the user explicitly clicks either (1) on the
corresponding script hat, or (2) on the stop-all button on the Scratch tool bar. One question we
must now address is how such a process could be stopped programmatically. A possible solution
would involve associating both a start and stop event with each script. This way, broadcasting an
event could stop the process associated with a script, but this solution seems somewhat
cumbersome. Another solution might be to "unbroadcast” an event. In this design,

"unbroadcasting" a blue event would stop any processes that were originally started by a blue

27

event. This is an intriguing design that should be seriously considered in future Scratch
development. However, for my thesis work, I chose to add a more general-purpose "loop until
event" block, and it has played a central role in my event-broadcasting model. This block, shown

below, repeatedly executes a sequence of contained blocks until a designated event occurs.

call it a night

Partying Until a Red Event Stopping the Party

In the example above, "fun-loving guy" continues to move in a circular path until "killjoy" (or any
other object) sends a red event. This event terminates the loop, and the associated process then
proceeds to evaluate the "set heading" block that follows. If a "loop until event" block contains no
blocks at all, it can be used simply to wait until a particular event is broadcasted. Because this
behavior has been rather useful, I added a separate "wait until event" primitive block. In the
example below, the hourglass object uses this block to wait repeatedly for an orange event, turn

180 degrees when one is received, and then wait again.

Waiting Until an Event

28

There is some possibility for confusion between the "when event received" script hat and the "wait
until event" block. And because both blocks can be used in similar ways, the user must sometimes
choose which control structure is more appropriate for a given problem. One situation in which
the "wait until event" block is particularly useful is for receiving an acknowledgment from an

earlier broadcast, as pictured below:

oo e

=X P Voo] recsived

broadcast turn (70
wait until I_ broadcast I_
turn W

Waiting for Acknowledgment Broadcasting a Response

In this program, "polite guy" broadcasts a blue event and then waits for acknowledgment. Upon
receiving the blue event, "acknowledger" turns 90 degrees and broadcasts a green event to indicate
the turn is finished. Having now received the green acknowledgment event, "polite guy" goes

ahead and turns, too.

Communicating Data Between Objects

The situation is more complicated if we wish to pass data between objects, rather than simply
notifying them that an event has occurred. For example, suppose we want to make a game, in
which a human-controlled player moves around the screen collecting various jewel objects, each
worth different point values. When the player collides with a jewel, the player needs to know its

point value (perhaps because the value influences the player's behavior).

We can take two approaches to address this problem. The simplest involves using global variables.
When the jewel collides with the player, it could update a global variable with its value. The

player would then query this variable. The problem with this approach is that it is fairly limited

29

(does not generalize to many characters collecting jewels) and leads to possible race conditions (for

example, if the player reaches a second jewel before reading the value from the first collision).

For my thesis work, I settled on a somewhat more elegant approach, in which objects can
broadcast an event containing an argument value. In this design, a new "broadcast event with
value" block now lets the programmer send a single numeric argument (or any value returned by a
reporter block). A "received value" block reports the argument value from the most recently
received event, which may be either (1) the event that triggered the script to start, or (2) the event
that terminated a "loop until event" or "wait until event" block. (We also considered replacing
the "broadcast event with value" block by using a new "set event value" block and the original

"broadcast event" block in conjunction. However, this seemed unnecessarily complex.)

In the example program below, when a jewel collides with the collector, it uses a new "broadcast
event with value" primitive block to send a blue event (for example) containing the jewel's point
value. The collector, upon receiving the event, uses a new primitive "received value" block to pull

the point value out of the event.

= st

& check if collected ® when [] received

'Fn_:r-ever-| increase score by received value”

ﬁching IM| =
|qE;'aadca51' Ii with |H|
_::_Iisappenr'
| |
Broadcasting an Event with an Argument Value Using an Event's Argument Value

Although passing data with an event is a fairly clean solution, it does complicate the simpler case of
broadcasting an event without an argument, if only because it means additional primitive blocks in

the command palette to distract the novice user from the more commonly used ones.

30

One concern is whether it will be sufficient to have a single numeric argument value packaged with
an event. It may later be necessary to support arguments of different types, or multiple arguments
in the same event. (If arrays were added to Scratch, we could pass a single array value with an
event, and store multiple argument values in the array.) It may also later help to provide a

primitive block that would return a reference to the object that sent the event.

We can also use event arguments (in a roundabout way) to have one object query another for a
value. In the following example, the "which way" object queries the "this way" object for its
heading by sending a blue event, and then waiting for a green response. The "this way" object
responds by sending back a green event containing its heading. The "which way" object then uses

the "received value" block to access this heading information.

when [] received
[ﬂ I -hending |

Querying for a Value Responding to a Query

31

32

IV. METAPHORS

A primary reason for introducing a broadcast-based communication architecture was to make
processes more accessible to novice programmers. We would therefore be doing a great disservice
to our users if we simply added the new primitive blocks exactly as described so far. Instead, we
should seek ways to make our event model usable and understandable, by connecting it to our
intuitions of how people and devices communicate with each other in the real world. In this
chapter, we will explore various metaphors we can use to represent broadcast communication in
Scratch. This will mainly affect the text labels on the blocks and choice of icons. More
significantly, though, a metaphor can strongly influence the way a novice programmer thinks about

communication in Scratch.

Searcbingfor an Appropriate Metaphor

In choosing a metaphor, we will consider how to name our events. So far, we have used colors as
event names, but colors are not things that we are used to broadcasting. Typically, we hear about
"broadcasting” in the context of radio and television signals. Perhaps a Scratch object could
broadcast a transmission on a certain radio frequency, and other objects could be tuned to listen to
such radio stations. However, radio and television signals send data continuously, and our objects
broadcast signals only occasionally. Therefore, our communication model more closely resembles
the way one broadcasts an instruction to a radio-controlled car. This would be a sensible
metaphor, but it is probably too obscure for most potential users. Few people have seriously
considered how their radios and remote-control cars work, and choosing a numeric frequency as an

event name would be too abstract.

A more tangible metaphor involves communicating through noises, such as drums or animal
sounds. For example, we could broadcast an event with a "hit cymbal" block, and respond with a
"when cymbal heard" script hat. Such a sonic metaphor would require icons (or text) representing

each of the possible noises that serve as event names. However, since our program appears visually

33

in the form of command blocks, we would prefer instead to select a visual communication

metaphor.

The Flag Metaphor

Another possibility involves using colored signals. We considered light bulbs and signal flares, but
eventually settled on colored flags. In this metaphor, an event is broadcasted by a "wave flag"
block, which may trigger a script with a "when flag waves" hat, or terminate an "until flag waves"

loop, as pictured below:

O il
wave E

I
mpe— —r

Event Blocks for the Flag Metaphor

Because flags are a visual metaphor, in which we think of objects seeing flags waving, we could
even designate a place on the screen to show the programmer an appropriately colored flag waving
whenever an event is broadcasted. Another nice feature of the flag metaphor is that many
programmers will be familiar with situations where colored flags really do signal the start of
events, such as in a car race, or in nautical communication. One drawback of using flags is that a
real flag would need to be in a real person's line of site in order to trigger a response. However,
the real failing of the flag metaphor arises when we try to send arguments with events. What does

it mean to wave a flag with a value?

wave E with |E|
waved value

"Waving" Argument Values

34

The Envelope Metaphor

Because we felt that passing argument values was necessary for the Scratch event system to be
sufficiently powerful, we worked to find a metaphor we could safely use to pass arguments. We
considered using colored envelopes to represent events, because it makes perfect sense to place an
argument value inside an envelope. In this metaphor, we use a "send envelope to all" block to
broadcast an event, we start scripts with a "when envelope received" script hat, and we terminate

loops with an "until envelope received" block, as pictured here:

® when [] received QT Ii received
|_.|_l.
send IE to a|||

Event Blocks for the Envelope Metaphor

Like all metaphors we have discussed, the envelope metaphor was imperfect. Real envelopes are
addressed to a recipient, but we need envelopes to be "broadcast" to all Scratch objects. To
achieve this behavior with a real mailing, it is necessary to prepare an envelope for each recipient.
Because the broadcasting concept is at the core of our communication model, can we allow
ourselves to represent events by a real world object that cannot truly be broadcasted? An
additional difficulty with the envelope metaphor relates to the transient nature of events. If we are
not home when the mail arrives, the envelopes we receive simply accumulate in our mailboxes,
which we can check later at our convenience. But in our event system, if an object is not
"listening" for an event (by having a "when event received" script hat or by running a "loop until
event" instruction block), then that event is forever lost to the object. It is impossible for the
object to query for what events it missed earlier when it was not listening. Therefore, choosing to
use the envelope metaphor may potentially surprise users who come to Scratch with intuitions

about how real world envelopes behave.

Sadly, it appears that we are faced with an over-constrained problem, in which there is no perfect
metaphor. Each of the various metaphors we have considered has its disadvantages. Of the

possible meanings to assign to colored events, my personal choice is to use flags. However, we

35

will revisit this topic later in this document, when we are faced by the limitations of using colors to

name events.

36

V. IMPLEMENTATION

Note: Some readers may wish to skip these more technical implementation sections and proceed to reading

about more high-level issues concerning our broadcast communication model in the next chapter.

The Scratch Evaluator

Before we can see how the broadcasting of events is implemented in Scratch, it is necessary to take
a brief, high-level tour of the Scratch evaluator. This is the part of the code that brings a Scratch
program to life, by walking through and activating the various Scratch commands. In presenting
the architecture of the Scratch evaluator, I will omit many details, and only focus on those

elements that are relevant to later understanding the implementation of our event model.

Before we get started, there are two key points to note about evaluation in Scratch. The first is
that Scratch is an interpreted language. The scripts that a user writes are not compiled into any
other format. Instead, the evaluator walks through and evaluates the graphical blocks themselves.
The second key point is that Scratch processes (which run the scripts that Scratch programmers
write) are not implemented in terms of Squeak processes (which are built into the programming
language that Scratch is written in). In developing Scratch, we wanted to have explicit control of
when to run which Scratch process, and it was therefore necessary to create our own processes and

process scheduler.

The Scratch process scheduler maintains a list of running processes. The list grows as new
processes are started, and shrinks as those processes complete or are aborted. The scheduler
repeatedly runs each process in the list in order, for one step each. After running for a short time,
each process must complete its step by voluntarily yielding control back to the scheduler, so that the
next process may run. A process should yield control whenever it is about to perform a

computation that could take a long time. Typically, this means that a process will yield at the end

37

of any loop iteration. (Processes also yield during timed commands like "wait 10 seconds", but

such commands are not covered in this document.)

A Scratch process frequently yields control in mid-computation, only to resume later. Because a
Scratch process may yield at any time, it must always keep track of exactly what it has computed so
far and what it has left to do. This state information is stored in the process's stack, which functions
as a sort of to-do list. The stack contains a pile of frames, each of which describes some action to be
taken by the evaluator. There are three types of frames that appear on the stack: (1) a block frame,
with a single Scratch block to be evaluated, (2) a sequence frame, with a sequence of command blocks

to be evaluated, and (3) a yield frame, used to indicate that the process is ready to yield control.

When a Scratch process runs for a step, it checks the frame at the top of its stack, and takes some
corresponding action. Having taken action, there will now be a new frame for the process to
handle at the top of its stack. This repeats until the process encounters a yield frame (prompting it
to yield to another process) or runs out of frames in its stack (causing it to terminate altogether).
The following high-level schematic shows the decisions used by a process to handle the frame at the

top of its stack:

check frame at
top of stack

vield frame pop and yieldy
sequence frame|push new command on stack
'|land advance program counter

block frame [check block type

self-evaluating |[pop and refumn value
. |to previous frame

special -

prmitve (different for each)

e\ heck arzumentd

need more [nush next argument
on stack

have enough|evaluate command with arguments, pop,
‘land return value to previous frame

How a Process Handles Its Top Stack Frame

38

Evaluation ofa Simple Program

The evaluator is best explained by walking through an example. Consider the following short

program:

forward |10

fupnﬁ ||£:::r1ﬁrard 10, turn 10

The Program Being Evaluated 1. Sequence Frame on Stack

This program is run inside a Scratch process in a single time step (without yielding control to
another process). The process is initially started with a stack containing a single sequence frame, as
shown above in stage (1). This frame contains a list of the two commands to evaluate, along with a
program counter that indicates which one to evaluate next. Initially, the program counter points to

the forward command, since that is the one that must be evaluated first.

When the scheduler allows the Scratch process to run for one step, the process looks at the top of
the stack and sees the sequence frame. It then advances the program counter to point to the next
command in the sequence, and pushes a new block frame onto the stack for evaluating the forward

command, as shown below in stage (2):

forward 10 (Forward 11
Formerd 10, Ferm 10 | Forerd 10, Fern 0 |

b b

2. Command Frame Pushed on Stack 3. Another Command Frame on Stack

Next, the process sees the block frame on top of the stack, and its behavior will now depend on
what type of block it must evaluate. There are three types of blocks: self-evaluating blocks (such as
numbers and booleans, whose values are trivial to compute), primitive (the majority of blocks fall

into this category), and special (ones with special evaluation rules like forever, repeat, if, etc). The

39

"forward" block is a primitive command. To evaluate it, we first compare the number of
arguments it requires (one) with the number of argument values we have so far computed (zero, as
designated by the empty bubble on the right side of the block frame). This means we must first

push a new block frame containing the "10" argument on the top of the stack, as shown in stage

G3)-

This time, when the process sees the new block frame on top of the stack, it recognizes the "10"
block to be self-evaluating. It therefore asks the block to evaluate itself, and thus the value 10 is
computed. The "10" block frame is now popped off the stack, and the computed value 10 is

placed in the forward block frame's list of argument values. This value appears in the bubble on

the right side of the forward block frame in stage (4) below:

forward 10 (1]
[Forward I0) [turn 10 [Forward 10, [Eurn 10
F Y
4. Pops Back with Argument Value 5. Ready for Next Block in Sequence

This time, the process will see that it has all the argument values it needs to evaluate the forward
block, and will now ask the block for a method name. This method ("forward:") is invoked on the
Scratch object in question with the argument values (10), prompting the object to move forward in
the world pane by 10 units. We then pop the block frame off the stack, and we are ready to

evaluate the next block in the sequence, with the stack as shown in stage (5).

Evaluating a Forever Block

We are now ready to understand how a special block like "forever" is evaluated. (The behavior of

a forever block is the basis for implementing the "loop until event" blocks described later.) The

following pictures show the before and after states of the top of the stack, when a "forever [turn

10]" block is evaluated.

40

| turn 10

F

v YIELD v
torevertumn 10 (ForeverEuzn 10 .

Top of Stack Before Evaluation Top of Stack After Evaluation

Initially, the process has a block frame at the top of its stack. This frame contains our forever
block. In evaluating this block, the process notices that the forever command is a member of a
short list of blocks with special evaluation rules. The rule for a forever block tells the process to
add two additional frame to the stack--a yield frame and, on top of that, a sequence frame for
evaluating the list of blocks contained by the forever loop. (In our example, the list consists of a
single turn block.) The process will first evaluate and pop off the sequence frame. Then, having
evaluated the blocks inside the forever loop, the process will pop off the yield frame and yield
control, allowing the scheduler to run all other processes for one step each. When control returns
to this process, the stack will be in the same state it started in, with the forever block's frame at the

top of the stack. Thus, the loop will repeat in this manner indefinitely.

Broadcasting Events and Starting Processes

Note: To separate issues of implementation from user interface and metaphor issues, I will revert to our earlier

raw, metaphor-free language when discussin e implementation of the event system.
taph language when d g the impl, tat th t syst.

To support the broadcast communication model, an event argument was added to the user
interface. These arguments appear in the various event-related blocks in the form of colored icons
(of ﬂags or envelopes). When a process encounters an event argument, it returns a string
representing the event name ("blue", for example) as the argument's value. Support for naming
events with arbitrary strings was implemented deliberately, in anticipation of later allowing users

to enter their own event names.

41

The "broadcast event" command is implemented as a primitive block, meaning that it does not
require a special evaluation rule. Its event argument is evaluated normally, and the block simply
leverages primitive behavior built into the Scratch object that is doing the broadcasting. This
primitive behavior causes Scratch to create a new event object and broadcasts it. This event object
contains the event's name ("blue", for example). (Later, the event will also contain an argument
value, and could one day include information about the object that broadcasted the event.) To
broadcast the event, Scratch must find all "when event received" scripts listening for events
matching the name of the newly created event. For each such script, Scratch creates a new
process. This process is added to the scheduler, with its stack initially containing a single sequence

frame with the list of blocks appearing under the script hat.

One open issue concerns what to do when an event is sent to a script that is already associated with
a running process. We feel that a hat should never be associated with two processes at the same
time, but this still allows for several possible solutions. One is to use the event as a trigger to stop a
process that is already running. However, such behavior can be somewhat surprising to the user.
Another possibility would be simply to ignore the new event. This is the behavior I ultimately
implemented for my thesis work. I'have found it to be reasonable for simple uses of events, but
potentially dangerous when used in conjunction with blocks that wait for an event. For example,

consider the "polite guy" and "acknowledger" scripts, reproduced here.

oo e

=X P Voo] recsived

broadcast turn (70
wait until I_ broadcast I_
turn W

Waiting for Acknowledgment Broadcasting a Response

If the "acknowledger" script is already running when "polite guy" broadcasts the blue event,
Scratch will ignore the event, and "polite guy" will be waiting forever for a green acknowledgment

event. This is a common difficulty in parallel programming when there is a shared resource (the

42

"acknowledger" script). The typical solution would be to have the "broadcast event" command
wait (block) until the "acknowledger" script is finished running an earlier process and ready to start
anew one. However, such a solution does not seem appropriate for a broadcast model, and has its

own share of difficulties.

Waiting for Events

The "wait until event" block behaves exactly like a "loop until event" block containing an empty
sequence of commands. We will therefore focus only on the implementation of the "loop until
event" block. It was originally unclear to us how a "loop until event" block should behave. We
considered treating it like a while loop, in which we only test at the beginning of each loop
iteration if the designated event has arrived. But, if the sequence of commands inside the loop took
a long time to execute (for example, if it included a "wait 600 seconds" block), this would mean
granting an extended existence to events. We would need to keep track of what events had been
received during the loop iteration, and all of this would conflict with our intention that events
should be fleeting and soon-forgotten occurrences. We ultimately settled on a behavior in which

an event could interrupt a process at any time.

The "loop until event" command is implemented as a special block, which means that it requires
the Scratch process to apply a special evaluation rule for it. The "loop until event" block should act
exactly like a forever block until an event with the designated name is received, at which point the
process should continue evaluating subsequent blocks. Therefore, the evaluation rule for this block
should cause the process (1) to take note of what event name it is waiting for and where to return
when that event is received, and (2) to otherwise behave like a forever loop. (We will also require

a mechanism for breakjng out of the loop when the event is received.)

43

The first diagram below shows the stack as it appears after the event argument has been evaluated

for an "until red received [turn 10]" instruction:

until W turn 10 (fid
until ® turn 10 G%d EETUIEN MAREER: red

1. Block Frame with Argument Evaluated 2. Return Marker Frame Inserted

At this point, Scratch inserts a new kind of frame, called a return marker, as shown in the second
diagram. In our example, the return marker frame tells the process that, when a red event is
received, the process should (1) pop the return marker and all frames above it off the stack, and (2)
continue execution at whatever frame appeared below the return marker. Until that event arrives,
the process will behave like a forever loop. However, we want this return marker to be inserted
only once--not on every iteration of the loop. We therefore add an extra dummy argument value
(indicated by an asterisk in the diagrams) to the "loop until event" block frame, indicating that we
have already added a return marker. (We could just look to see if there is a return marker already

present, but what if a marker was put there for some other reason?)

On each iteration, the process will check for the dummy value. If none is found, then a return
marker is inserted below and a dummy value is added to the block frame. If the dummy value is
there already, the process will add a sequence frame on top of a yield frame (shown below in the

third diagram), just as it did for the forever loop.

| turn 10

re

v YIELD v
until O Furn 10]

EETUEN MAEEER: red

3. Evaluated Like a Forever Loop

Interrupting a Loop with an Event

In order to interrupt this loop, someone must broadcast a red event. Previously, we said that
broadcasting an event only prompts Scratch to start new processes (for corresponding script hats).
But, this is insufficient to support "loop until event" blocks, because we now require broadcasting
an event to change the behavior of processes that have already been started. Therefore, when an
event is broadcasted, we will now pass the event to each existing process, in addition to starting

new ones.

Recall that the scheduler only truly runs one process at a time, with all others in a sort of
suspended animation. A process will only check for newly broadcasted events when the scheduler
asks it to run for a step. But, this means that it is possible for more than one event to arrive before
a process can examine any. When this happens, it is important that the process handle them in the
order they were received. (Otherwise, nested "loop until event" blocks will exhibit surprising
behavior.) Therefore, in addition to having a stack, it is now necessary for a process to maintain an
event queue. When an event is broadcasted, it is added to the end of each process's event queue.
Every time a process is about to look at the frame on top of its stack, it will now first check its
event queue. (If we only checked for new events when the process is first asked to run a step, then

we would miss any events broadcasted by the process itself.)

The process examines the events in the order they were received. For each one, it looks through
the stack, starting from the top, for a return marker frame waiting for an event with the same
name. If a match is found, that marker frame and all frames above it are popped off the stack.
Otherwise, the event is ignored. One by one, each event is removed from the queue. When there

are none left to examine, evaluation proceeds as usual from the top of the stack.

The details of this architecture primarily have implications for the behavior of nested loops. In the
following example, we have a "wait until event" block nested inside a "loop until event" block.
(Recall that "wait until event" blocks behave exactly like empty "loop until event" blocks.) Both

blocks are waiting for a red event, so two red return markers appear on the stack.

45

until B received EEE TSR] éed
" wait until Ii =
| " | RETUEN MAREEE: red

RETUEN MAEEER: red

Nested Blocks Waiting for the Same Event

When a red event appears in the event queue, the process will only pop the top two frames off the
stack--from the top return marker on up. On the other hand, in the example below, a red event
will break out of both loops, popping frames off the stack from the red return marker on up--

including the blue return marker.

until B received Wait until W @ue
" wait until |- -
| - I RETUERN MAEEEE: hlue

RETLUEN MAEEER: red

Nested Blocks Waiting for Different Events

Consider the same example again, but this time for the case where the event queue contains both a
red and a blue event (each of which must have arrived since the last time this process yielded). If
the blue event arrived first, then we will pop frames off the stack from the blue return marker on
up, and then from the red marker on up. On the other hand, if the red event arrived first, we will
pop all frames from the red marker on up, including the blue return marker. At this point, we will
still have a blue event left in the queue. If there are truly no more blue markers left on the stack,
then this event will be ignored. But, if there had been a second blue return marker somewhere
below the portion of the stack shown (as would be the case if the "until red received" loop were
nested inside a larger "until blue received" loop), then additional frames will be popped off the

stack. In other words, the order that the events are received may affect how a process behaves.

46

This is why it is important to keep track of the original ordering of events by storing them in a

queue structure.

Events with Arguments

It is time to extend our broadcast model to include events with argument values. Now, when we
evaluate a "broadcast blue with 10" block, Scratch will create an event object whose name is
"blue" and whose argument value is 0. When an event is broadcasted without specifying an
argument (by using a "broadcast blue" block, for example), an argument value of 0 is automatically
set by default. This means that a "received value" block will return 0 when an event is received

with no specified argument value.

In order to evaluate a "received value" block, each process must now remember the last event it
received (in addition to keeping a stack and an event queue). Therefore, when a process is created
in response to an event, the process now stores this last received event. In addition, when an event
received in the process's event queue results in the termination of a loop, that event gets stored as
the last received event (and the previous event is forgotten). The "received block" command is
implemented as a special block. To evaluate it, the process simply returns the argument value of

the last received event.

47

48

VL. CASE STUDY

The Space Invaders Game

To step back and get a sense of what it is like to use events, I decided to program a simplified
version of the classic "space invaders" arcade game in Scratch. Below is a screenshot of the Scratch

world pane for my space invaders game:

R

A

Scratch World Pane for my Space Invaders Game

My simple game consists of just three objects: (1) a triangular red spaceship that moves along the
bottom of the screen as move the mouse, (2) a small gray bullet that is fired from the spaceship
when I click the mouse button, and (3) a green alien creature that zigzags down the screen.
Because there is only one bullet object in the game, the spaceship can only fire one shot at a time.
Once a bullet is fired, the spaceship must wait until the bullet goes off the top of the screen before
firing another. If the bullet strikes the alien, the alien disappears and the game ends. Alternatively,

if the alien reaches the spaceship, the spaceship disappears and the game ends.

49

The Spaceship

The space invaders game was implemented using blocks based on the flag metaphor we described
earlier. To start the game, the user runs a special "go" script, which waves a green flag to tell both
spaceship and alien that the game has begun. This script has arbitrarily been included among the

spaceship's scripts, as shown below:

The Spaceship's Scripts

When the spaceship sees this flag, it begins running its "when green flag waves" script shown
above. In this script, the spaceship repeatedly (1) moves so that its x-coordinate corresponds to the
x-coordinate of the mouse, (2) fires a bullet when the mouse is clicked, and (3) dies (by hiding
offscreen) and signals the end of the game if it touches the alien. To fire a bullet, the spaceship
waves a yellow flag to start the bullet's firing script. Because the bullet needs to know where to
start firing from, the spaceship must send its x-coordinate to the bullet as an argument with the

yellow flag event.

50

The Bullet

When the yellow flag is waved, the bullet fires by running the corresponding script, as shown
below. It sets its x-coordinate to match the spaceship’s position, as contained in the yellow flag
event. The bullet then advances up the screen. The script terminates when the bullet has gone
offscreen. The bullet has an additional script that causes it to move offscreen whenever a red flag

waves (signaling the end of the game).

The Bullet's Scripts

The Alien

The green flag, signaling the start of the game, triggers two of the alien's scripts to start. Both of
these scripts continue to run until a red flag is waved, signaling the end of the game. The first
script, as shown in the following picture, causes the alien to descend from offscreen, and zigzag
down the screen toward the spaceship. The second one causes the alien to die if it encounters the
bullet, just as the spaceship does when it touches the alien. This behavior is realized by repeatedly
testing if the alien's green color is overlapping with the bullet's gray color. If this condition occurs,

then the alien dies (by hiding offscreen) and waves a red flag, signaling the end of the game.

51

The Alien's Scripts

Lessons from Space Invaders

The space invaders game appears to have validated the need to pass arguments in events. Initially,
we hoped that events without argument values would be sufficient to generate a wealth of
interesting programming projects in Scratch. However, Scratch would be far too limited if it did
not allow a user to create a project as simple as my space invaders game--a project that could not
have been programmed without passing values with events. Clearly, the spaceship must
communicate its x-coordinate to the bullet. If all inter-object communication is to be handled

through events, then packaging this value inside an event is the only reasonable solution.

There are a number of ways we could improve Scratch in order to simplify the programming effort
behind my space invaders game. In my project, the spaceship's "go" script waves a green flag to
start the game. But, this seems to be an unnecessary level of indirection. Rather than ask the
spaceship to wave the flag, why not have the person playing the game wave this virtual flag
themselves? It was therefore proposed that a button be added to the Scratch toolbar at the top of
the screen. The user would press this button to wave a green flag. We are specifically choosing
green here, because it is commonly associated with words like "go" and "start", and because we
feel that nearly every Scratch project will require some mechanism to prompt it to start running.

For the Scratch user that is beginning work on a new project, such a button must not imply that

52

merely pressing it will make anything actually go. The user interface must suggest to the user that
the button simply broadcasts an event, and that the user may choose to have the event trigger

appropriate scripts to make the project go.

One place where my space invaders scripts are unclear relates to my usage of "color is over"
blocks. Instead of testing if the alien's green color overlaps with the bullet's gray color, I would
just like to know if any part of the alien object is touching any part of the bullet object. Although
the current version of Scratch provides a block to test if one object is touching another, this block is
contrary to our plan to make Scratch objects shareable. As discussed earlier, we do not want to
permit one object to contain a block with a hard-wired reference to another object. However, we
can avoid this difficulty by leveraging the implicit interfaces provided by the event model. Rather
than hardwiring the alien to test if it is touching the bullet, we could instead have the alien check if
it is touching an object that responds to yellow events. This would require a new block, which
would take in an event argument and return a boolean value. In the case of the alien testing for a
collision with the bullet, it might read "touching something that responds to yellow events" or

"touchjng something that looks for yellow ﬂags".

A final simple improvement that could be made concerns the detection of mouse clicks.
Currently, the spaceship must continuously check if the mouse is down in order to determine
when the player has clicked the mouse button. It would be preferable if, instead, we could think
of mouse clicks as a kind of event. In this model, Scratch would automatically broadcast a special
event when the mouse is clicked, which would start any script with a "when mouse clicked" hat.
Although this approach simplifies mouse handling for the programmer, it involves some tricky
issues. For example, we clearly do not want all mouse clicks to fire events, since often we are

using the mouse to edit a Scratch program, rather than as input to a running program.

53

54

VII. FROM COLORS TO STRINGS

The Fall of Colored Events

The most serious lesson from my space invaders game concerns the role of colors as names for
events. Recall that we chose to use colors, rather than strings, largely to avoid confusion between
broadcasting events and calling procedures. However, in the course of describing the space
invaders program, I find myself automatically assigning meanings to flag colors. Every time I talk
about green flags, I find it necessary to remind my audience that green signifies "go". Even as [am
writing this Scratch program, I am thinking "game over" in my head when I use a red flag. If you
were looking at the scripts for my space invaders game for the first time, you would probably have
to study the code pretty closely before you developed the intuition that yellow flags mean "fire".
In developing a more complex Scratch project, researcher Margarita Dekoli found herself needing
to keep track of the meaning of each color on a note written next to her computer. In fact, when
describing her efforts to create a simple project with a novice programmer, Dekoli wrote, "In my
explanations, I used names for the events, like 'eat you' and 'disappear’." It therefore seems that
naming events with colors makes Scratch programs confusing to write and difficult for others to

read, and has not eliminated the need to associate words with events--at least in the programmer's

head.

I encountered a closely related issue in writing the space invaders program, concerning script hats.
With the introduction of the event mechanism, Scratch now features two kinds of script hats.
First, there are the original script hats that are assigned string names and used for traditional
procedure calls. We might therefore call these procedure hats. Now, we have also introduced event
hats to allow the programmer to associate an event with a script. The hats used in my space

invaders game are predominantly event hats, with labels such as "when yellow flag waves".

When I first began to write the space invaders program, I had no plan in mind for how I was going
to leverage events. One of the first things I did was to use a procedure hat labeled "fire" to begin a

script in the bullet's script pane. When I was satisfied with the bullet's firing behavior, I realized

55

that I needed to modify the spaceship's code to invoke the bullet's fire procedure. At this point, it
became apparent that [would need to use an event here, and that I would therefore need to modify
the "fire" script to use an event hat instead. I pulled off the procedure hat, deleted it, created a
new event hat, and connected it to my old "fire" script. I chose to use a yellow flag as an

appropriate reminder of "fire". The two versions of the "fire" script are shown here:

whan [E:} waves
B /l/f“ hen [l

The Fire Script with a Procedure Hat Invoking the Fire Script with an Event Hat

Now, it seems a shame that, by virtue of associating the script with an event, I should have to give
up a descriptive name like "fire". It was therefore suggested that I could avoid this problem by

using both an event hat and a procedure hat, as pictured below:

Calling a Procedure Hat from an Event Hat

However, it would take a fairly clever programmer to think of this solution, and it is still only of
limited help. We have introduced an unnecessary level of indirection by using the auxiliary script.
Frequent use of this idiom would make programming in Scratch rather awkward. Ultimately, our

problem is only partially solved, because we still need to use a "wave yellow flag" block to trigger

56

the "fire" behavior. It would be preferable if there were some way to invoke the "fire" script by

using the descriptive word "fire" itself.

It seems that what we really want here is (1) to name a useful behavior ("fire") in one object (the
bullet), and (2) to use that name to start this behavior from another object (the spaceship).

Perhaps we could achieve this by using strings--instead of colors--to name events.

The Shouting Metaphor

We will now explore an event model in which we use strings to name events. The first challenge
we faced was the selection of an appropriate metaphor. The obvious choice was to have the
various objects "say" event names. However, to emphasize the broadcast nature of events, we
eventually went one step further, having the objects "shout" instead. (It is unfortunate that there is
a somewhat negative connotation associated with shouting.) Below are some examples of event

blocks using this shouting metaphor:

n a heard

fetch

Event Blocks for the Shouting Metaphor

Like the flag metaphor, the shouting metaphor is somewhat awkward when it comes to passing

argument values through events:

e ow
60!

"Shouting" Argument Values The "Shout Go" Button

57

We also added the "go" icon (shown previously) on a button in the toolbar at the top of the Scratch
screen. Pressing this button broadcasts an event named "go", as if a "shout go" block were

executed. This button is equivalent to the one we discussed earlier for waving a green flag.

Selecting a String Name

When our pool of event names consisted of a limited number of colors, selecting an event name
simply meant popping up a palette of color choices. Using string names for events, however,
means that we are choosing event names from an unlimited space of strings. It is tempting,
therefore, to pop up a text field dialog, and let the user enter any string. But, we want be careful
not to overwhelm the novice user. Furthermore, we want to prevent the programmer from
accidentally introducing errors due to typos. For example, imagine trying to debug a program in
which one object is listening for "turn around" but another is shouting "turn arround" instead. I
have therefore settled on a pop-up menu (shown below) that allows the programmer to choose a

default string name, to select a custom string name, or to create a new custom name:

|
shout fete 20
trezet
tark
fetch
mMove k
zit
CUStOI DAme ...

L

Selecting a String Name to Shout

In this example, the user has clicked on the event argument of a "shout" block. This action has
popped up a menu showing a number of string name options. The "go" and "reset" names are
provided by default. (The Scratch team could probably suggest more appropriate default names.)
The "bark", "fetch", "move", and "sit" names are custom names that the programmer has created.
These appear in other event blocks in the same project. The "custom name ..." option allows the
user to designate a new event name by entering a string into a text field in a pop-up dialog (not

shown). Once a custom name is entered in this manner, it will appear in the pop-up menu the

58

next time the user clicks on an event argument. This mechanism therefore allows a user to type a
new custom name on a "shout" block before selecting it later from an event script hat.
Alternatively, the user can type in a custom name for an event script hat and later select it on a
"shout" block. Additional choices should appear in the pop-up menu for an event script hat, in
order to associate a script with a mouse click or key press event. (These choices should also appear

for "loop until event" and "wait for event" blocks.)

59

60

VIII. SIMULATING PROCEDURE CALLS

Two Ways to dery

By using strings to name our events, we have now introduced a possible confusion between (1)
using events to start scripts with event hats, and (2) using procedure calls to invoke scripts with
procedure hats. If the two hats look similar and provide similar functionality, it is therefore
reasonable to wonder if we really need two kinds of hats. To resolve this question, we will now

take a closer look at these two mechanisms. Consider the following object's scripts:

zelf-reliant

turn double |E | answenr E *

Calling a Helper Procedure

The "self-reliant" object uses a helper procedure named "double" to double the value 45. The
procedure returns 90 to the "go" script, which then rotates the object by 90 degrees. Now, what
if this object had not known how to double a number, and needed to query another object to
perform this computation? Well, we know that the only way for two objects to communicate is to

use events.

61

The following pictures show an object using events to ask another object to double a number:

needy doubler
when hezard

Asking Another Object to Double Doubling for Another Object

In this example, the "needy" object broadcasts a "double" event containing 45 as its argument
value. The "doubler" object responds by broadcasting an "ok" event with twice this value. The
"needy" object waits for the "ok" event, and then turns a number of degrees corresponding to the

returned argument value (90).

By now, we have seen this trick of using two events to simulate a procedure call multiple times.
For the remainder of this document, we will refer to such a simulated procedure call as an event
call. The cumbersome event call syntax appears radically different from the compact procedure
call syntax. Yet, a Scratch user will most likely need to learn both syntaxes, as we expect that
using a helper procedure and querying another object for a value will be common operations in
Scratch. Notice, however, that an object does not technically need to use the procedure syntax to
query itself for a value. It would be perfectly legitimate for the object to use the event call trick to
talk to itself. Perhaps a Scratch programmer could get away without ever using the procedure call
syntax. It would certainly be desirable if Scratch users only needed to learn one way to query for a

value, but using the event syntax is somewhat unwieldy. Can we simplify the syntax?

62

Concise Syntax for Event Calls

To simplify the event call syntax, I decided to conceal the response part of the two-event query.
This would at least prevent the user from having to think up two event names. To achieve this, I
combined the "shout double with 45" and "wait until ok heard" blocks into a single "ask for double
of 45" block. And instead of shouting "ok" to return a value, I'introduced a "shout back" block, as

shown here:

when m heanrd

when heard

Anonymous Response Syntax

The "ask" block broadcasts an event, and then waits until it receives an anonymous response event.
Under the covers, Scratch automatically generates a name for the response by appending
"#response" to the original event name. When the "shout back" block is reached in this example,
Scratch broadcasts a "double#fresponse” event with the desired value, and this value is then
accessible to the calling script through the "shouted value" block. (If no "shout back" block is
encountered, the process will automatically broadcast a "double#response” event with value 0
when the script terminates.) In this syntax, the Scratch user still thinks of the response as a shouted

event, but does not need to give the event a name. In the following alternative syntax, the

response event is entirely hidden from the user:

when m heard

when [LTM heand

Hidden Response Syntax

Because the "ask" block here returns the value answered by the "double" script, the "go" script

does not require a "shouted value" block, and the programmer does not even need to be aware of

63

the response event. I have therefore replaced the "shout back" label in the "double" script with
"answer". Now we have an event call syntax that is nearly as compact as the procedure call syntax,

and that can be used to query for values in another object.

Does the additional compactness justify hiding the response event in this manner? By using this
syntax, we have lost the metaphor of shouting back an answer. We have also introduced a
potential confusion when choosing whether to use an "answer" or "shout" block, which might have
been clearer with the "shout back" syntax. Furthermore, it was perhaps more in line with our
natural way of speaking to ask for a value before using it, rather than nesting the "ask" block inside
the "turn" block. Looking at the hidden event syntax, it may surprise a user to learn that the
response is broadcasted to all objects, rather than just sent directly to the process that sent the
initial event. (It may therefore be worth considering an alternative implementation in which only

the sender receives the response event.)

Sometimes a programmer will invoke a script that does not return a value. For example, we might

wish to call the "rotate" script (shown below), and to wait for it to terminate before proceeding:

® when heard
turn Iﬁ| shout rotate and wait

Rotate Script Calling the Rotate Script

For this, we would need a "shout and wait" block, as shown above. Here, the calling process
would broadcast a "rotate" event, and then wait for a "rotate#response" event. Scratch would
then need to send a "rotateHresponse” event when the rotate process finishes, even though there is
no explicit "answer" block. Now, when Scratch programmers wish to trigger another script, they
must decide whether they want the calling process to continue evaluating subsequent blocks
immediately (using a "shout" block), or if they want the calling process to wait until the triggered

script terminates (using a "shout and wait" block).

64

Implementing the Ask Block

Note: Some readers may wish to skip these more technical implementation sections and proceed to reading
about more high-level issues in the next chapter. Those readers that do read this section should note that, as

before, we will avoid user interface metaphors (such as "shouting") when discussing implementation.

We have discussed a number of primitive blocks in the "broadcast and wait" family. In this
section, we will only look at the implementation of a general-purpose "ask" block. (The "shout
and wait" primitive mentioned earlier provides a subset of this functionality.) The Scratch
evaluator considers the "ask" command (and related primitives) to be a special block. Evaluating
an "ask for double of 45" block (for example) proceeds exactly the same as evaluating a "broadcast
double with 45" block followed by a "wait until doubletfresponse”. Stage (1) below shows the top of
the process stack after evaluating the arguments for the ask block. The process then broadcasts an
event named "double" with argument value 45, and inserts a return marker for an event named

"double#Hresponse”, as shown in stage (2).

ask double 45 é::gbie

double EETUREN MAREER:
ask double 45 <45 doublefrespon=e
1. Stack After Evaluating Arguments 2. Stack After Broadcasting "double"

Finally, evaluation of the ask block proceeds as if executing an empty "loop until doubletfresponse"

block, as shown in stage (3):

v YIELD v

EETUEN HMAREER:
doublefrespon=e

3. Behaves Like Empty "]oop until" Block

65

Receiving the Response Event

Suppose the ask block is nested inside another block. Then, when the process finds a response in
its event queue, it must pass the response's argument value to the containing block. For example,

when a process evaluates the following block, the top of its stack will appear as shown here:

45 =

ask double 45 éﬂuble

RETURN MARKER:

doublegfresponse
tum ask for double of E el |
Nested Ask Block Stack for Evaluating Nested Ask Block

When the "double#fresponse” event is received, the process must pop off all frames down to and
including the corresponding return marker. In addition, it must provide the argument value

received in the response event (90) to the block frame below the return marker:

turn ask double 45 (a0

Response Value Passed to Containing Block

Sending the Response Event

When a script has been triggered by an event, it will terminate and broadcast a response event in
one of two situations: (1) if an "answer value" block or "done" block (equivalent to an "answer 0"
block) is evaluated, or (2) if the process finishes evaluating the script without encountering an
answer or done block. It is simpler to begin by considering this second case. (Note that only
process-starting events--those that trigger scripts to start running--will result in response events.
Process-continuing events--those that cause a process to break out of a loop--will not result in

response events.)

66

When an event triggers the start of a new process, the process must now store the name of the
response event to broadcast. A process started by an event named "rotate" will need to remember
to respond with an event named "rotate#fresponse". If no "answer" block is encountered, the
process must broadcast an event with the stored response name. This behavior is achieved by
placing a special sender frame on the process's stack. The sender frame contains the name of the
response event to broadcast. Whenever a sender frame appears at the top of its stack, a process
will broadcast an event with the given name (and with 0 as the default argument value) and pop off

the frame.

Recall that when a process is started, its stack initially contains a sequence frame with the collection
of blocks in the script being run. Now, however, when a process is started in response to an event,
a sender frame will be inserted below this sequence frame. The following shows the initial stack

for a process running the "rotate" script shown:

| turn H0
& when received -

P Iﬁ SENDER: rotatefresponse

Rotate Script Stack When Script Starts

This inserted sender frame guaranties that the process will eventually send the appropriate
response message if no answer block is reached. Now consider the simple "days" script below, in

which we do encounter an answer block:

(?

’7 | Bnswer 7 |
& when received -

answer |7 SENDER: days#response

Days Script Stack When Evaluating Answer Block

When the process reaches the answer block, its stack will appear as pictured above (after evaluating

the 7 argument). At this point, the process notes the answer value of 7 (or the default value 0, if

67

this had been a "done" block), and pops all frames off the stack until a sender frame is
encountered. Scratch then uses the "days#response" name noted in the sender frame, broadcasts

an event with this name and the noted answer value, and terminates the process.

68

IX. REPLACING PROCEDURE CALLS

Having simplified the event call syntax used to simulate procedure calls, it is now time to consider
whether we can eliminate procedure hats altogether. We would certainly prefer if Scratch users
only needed to learn about one kind of script hat, but what would be the ramifications of removing

procedure hats from Scratch?

We should first consider the role that procedure hats currently play in Scratch. Because a
procedure and its invocations must reside within the same object, they are of somewhat limited
use. Ina way, procedure hats resemble an object-oriented language's privately-scoped methods--
capturing helpful patterns of computation, but taking a back seat to the public methods (a role
played by event hats) that define the object's interface. Used well, a helper procedure can make a
program cleaner and more readable. Capturing helpful behavior in a procedure is certainly a
powertful idea that we would like Scratch users to learn. But how many Scratch programmers will
make use of helper procedures? And of those programmers advanced enough to want such
procedures, how many will mind using event calls instead? Because the introduction of events has
diminished the role of procedures, maybe Scratch would not be sacrificing too much by giving up
procedure hats. To determine the extent of this sacrifice, we will use the remainder of this chapter

to explore some of the subtler distinctions between procedure calls and event calls.

Procedure Calls vs. Event Calls

As just mentioned, procedure hats typically serve to designate private helper methods. Consider
the spaceship object from our space invaders game. It calls a helper procedure named "hide",
which causes the spaceship to hide offscreen. No other object can call the spaceship's "hide" script.
If we now change this procedure hat to be an event hat, the spaceship will be able to use event calls
to run its "hide" script. But, now any object can broadcast an event to cause the spaceship to hide.
Because there are occasions when a programmer wishes to prevent other objects from accessing

some portion of an object's behavior, this is a limitation of event calls that we may need to address.

69

Thankfully, this is a simple defect to fix. One solution would be to allow the programmer to mark
an object's event hat as "private". Such a script could then only be triggered by an event
broadcasted by this same object. However, it is unclear whether Scratch users would take

advantage of such a feature.

A related concern of eliminating procedure calls involves namespaces. Currently, each Scratch
object has its own space of procedure hat names. As in our space invaders game, each object can
have a helper procedure named "hide", without resulting in any naming conflict. When an object
invokes its "hide" script, there is no confusion about which script to run. Now, imagine that we
replace each of these "hide" procedure hats with a "hide" event hat. When the spaceship object
asks itself to hide by broadcasting a "hide" event, it will now inadvertently cause all objects to hide.
This problem arises because, unlike for Scratch procedure names, we have only a single namespace
for all event names. Ironically, here is a situation where the broadcast model works against our
goal of shareability. When importing another programmer's Scratch object into our project, we
will need to make sure that its event names will not conflict with ours. (On the other hand,
imagine how many more name conflicts we might encounter if we use colors instead of strings to

name events.)

There are a few ways to avoid potential name conflicts. One solution is to use a naming
convention, in which we include the object's name in any event hat intended for private use. For
example, we could use a "hide spaceship" event for the spaceship, a "hide alien" event for the
alien, etc. This would be fairly tedious. Our idea of designating some event hats as private could
also be used to avoid some name conflicts. Imagine a space invaders game in which each object has
a privately scoped event hat named "hide". In such a program, if the spaceship were to broadcast a
"hide" event, only the spaceship's "hide" script would start to run. A final and more powerful
solution would be to allow a Scratch object to send an event to a single specified target object.
Then, an object could send an event only to itself, as a means of invoking a helper script. We will

explore this last option in further detail shortly.

70

One of the most powerful ideas in programming is the ability to create procedural abstractions that
can then be used as if they were primitives. Procedure hats provide this functionality in Scratch.
When a script is created using a procedure hat, a new block appears in the object's command
palette for invoking this procedure. This block looks and can be used exactly like a primitive
block. In this manner, Scratch empowers its users to make their own blocks. If we remove
procedure hats from Scratch, we will be depriving Scratch programmers of this ability. Although

this issue largely comes down to syntax, it may be perceived as a substantial loss.

A subtle but important difference between procedure and event calls concerns a program's flow of
control. In a procedure call, a process associated with one script evaluates blocks in a second
script. Meanwhile, the second script may be associated with a process of its own. This confusing
behavior was one of the primary reasons for considering alternative communication models like
our event system. With event calls, on the other hand, the calling process never leaves the script it
started in. Instead, when a process running in one script uses an event call, it broadcasts an event
that causes a second process to run the designated script. During this time, the first process is
simply waiting for an answer from the second process. When the second process terminates, it
broadcasts an event that triggers the first one to resume its work. It is our hope that this clear
connection between a process and the script it runs makes the event model more accessible to
novice programmers. Even though our event calls are behaving like procedure calls, the user can
understand the program's behavior in terms of the event system's more intuitive process model.
(This distinction is even clearer when using Scratch's single-stepping mode, which slowly lights up

each block as it is evaluated.)

Using Procedure Call Syntax

We have now explored several differences between procedure calls and event calls. We might
now feel that the gained simplicity of having only one kind of script hat outweighs the advantages
of having Scratch procedure hats. If we therefore remove procedure hats altogether from Scratch,

an interesting possibility opens up to us. We would no longer need to worry about confusing

71

event calls with procedure calls. Therefore, we might choose to use the standard procedure call
syntax for event calls. In this section, we will discuss the merits of such a choice. Consider again

our example event call, using the "shouting" metaphor:

when m heanrd

when [LTM heand

Event Call Using "Shouting" Metaphor

Without procedure hats, there is nothing stopping us from using something resembling procedure
call syntax instead. The following blocks show how the same event call might look, using

procedure call syntax:

Event Call Cloaked in Procedure Syntax

Behind the scenes, these blocks would still behave the same as those using the "shouting"
metaphor. Scratch would still broadcast a "double" event (with 45) and broadcast back a
"double#Hresponse” event (with 90). This is about as concise as we could ever hope to make our

event call syntax. Consider our "rotate" script again, shown here with both shouting and

procedure call syntax:

when hzard

Rotate Script with Shout Syntax Rotate Script with Procedure Syntax

72

Recall that the user can choose to invoke this script using a "shout rotate" or "shout rotate and
wait" block (shown below), depending on whether the calling process should wait for the "rotate"

process to terminate.

shout |rotate shout |rotate and wait
Starting as a Process Calling as a Procedure

We might be tempted to make the procedure-syntax equivalents of these blocks appear as follows:

Ir'atate Ir'atate and wait ‘

.

Starting as a Process Calling as a Procedure

One of the great benefits of this syntax is that the "rotate" block on the left now appears a lot like a
built-in Scratch primitive, such as a "turn 90" block. However, a "turn 90" block will cause the
object to complete its turn before evaluating the next command. We might therefore be surprised
that our "rotate" block does not finish rotating before Scratch runs the next command. (Such
behavior would be of even greater concern when invoking scripts that take a considerable amount
of time to finish executing.) Therefore, a better procedure syntax might be to label the process-

starting block as "rotate and continue", and the procedure-calling block as "rotate":

Ir'nfnfe and continug Ir'nfnfe

Starting as a Process Calling as a Procedure

No More Metaphors?

We have now glimpsed into an intriguing version of Scratch, in which a concise procedure call
syntax has replaced our use of more vivid event metaphors. Which of these syntaxes will make
programming easier for novices? On the one hand, the compactness of the procedure call syntax

allows us to create scripts that are perhaps more readable. There is no metaphor-related text to

73

distract us from the program's functionality. Also, it is possible that the novice programmer would
more easily connect a "rotate" block to the idea of invoking the "rotate" script, than they would
associate the wordier "shout rotate" with running the "when rotate heard" script. Perhaps more
users will get lost in the intermediate metaphorical medium of shouting or flag-waving than will

benefit from the suggested mental imagery of inter-object communication.

No matter how well they are disguised as procedure calls, events will continue to be broadcast to
all objects and processes. Users that expect procedure call behavior will quickly be surprised by
the quirks of using primitives built on top of our underlying broadcast communication system.
Because we cannot completely conceal the broadcast-related behavior (and we do not fully want to
do s0), it could be beneficial to make the notion of events an explicit part of our syntax. This is
something our shouting and flag-waving metaphors did for us. Most likely, these metaphors will
help Scratch users understand and internalize Scratch's communication-related concepts much
more easily than the compact procedure call syntax. Ultimately, making programming

understandable is far more important than keeping Scratch programs short.

Sending an Event to a Spea:ﬁc Object

We might decide that we like the procedure call syntax, but are worried that it is misleading as a
user interface to a broadcast-based communication model. If this is the case, then maybe we
should consider replacing our underlying event-broadcasting framework with the more traditional
object-oriented communication system that this procedure syntax would lead us to expect. By far,
the most significant difference between our event calls and a traditional object-oriented system's
method calls is that methods are called on a specific object while events are broadcasted to all
objects. In fact, one might say that this is essentially the only difference. We should therefore ask

ourselves if we ever need to send an event to a specific object.

It turns out that it is possible to invent hypothetical programming exercises that Scratch cannot

support without such targeted events. For example, consider the jewel-collecting game we

74

discussed earlier, in which a human-controlled player moves around the screen collecting various
jewel objects, each worth different point values. When the player comes across a jewel, the player
needs to know the jewel's value. Now imagine that, in addition to the human-controlled player,
there are several computer-controlled characters, each of which is also competing to accumulate
valuable jewels. In our earlier implementation of this game, when the jewel collided with the
player, it broadcasted a blue event with its value. The player would then receive the event and
accumulate the jewel's point value. But now, there are many objects that respond to blue events in
the same manner, and we only want the character that just collided with the jewel to respond.

Here is a case where we need to send an event to a specific object.

If we were to support such targeted events in Scratch, there are multiple ways this functionality
could be added. The simplest would be to restrict an object to sending an event either (1) to all
objects, or (2) just to itself. A fancier solution might support a "whisper" block for sending an
event to the nearest object that (1) contains a corresponding event hat, and (2) is not the sending
object. Perhaps such "local" communication would be sufficient, and there is no need to provide a
mechanism to send an event to a specific distant object. (It would certainly solve our jewel-
collecting troubles.) The most flexible system would provide an event-sending block that took an
argument to identify an arbitrary recipient object. (We would then also require a number of
reporter blocks to identify a unique recipient.) All of this would mean a potential explosion in the
number of primitive blocks required to support sending events. We wish to avoid overwhelming
the programmer with too many options, and therefore a strong argument would be required to

justify moving Scratch in such a direction.

Although the hypothetical jewel-collecting game presents a need for such targeted-event
functionality, it is reassuring that we have not yet found ourselves needing targeted events in the
course of creating a real Scratch project. Therefore, owing to its simplicity and power,
broadcasting events to all objects appears for now to be the best direction for Scratch. We will,
however, need to keep the possibility of one day supporting targeted events in the back of our
minds. If we do eventually require such support, we will need to revisit many of the issues

discussed in this chapter.

75

76

X. CONCLUSIONS

We have now laid the foundations for a broadcast communication model in Scratch. We have seen
how such a model provides the basic functionality needed to support inter-object communication
and the management of object processes. We have considered subtle implementation details, and
debated the merits of several user interface metaphors. Finally, we have pushed events into the
realm of procedure calls, and have raised questions about the role of procedures in our event
framework. In this chapter, I will revisit a few of the more important questions raised in this

thesis, and present my own opinions as to how those questions should be answered.

1. Can a broadcast paradigm make communication and processes more accessible to novice programmers?

My feeling is that it can, although ultimately this question will be decided by extended user-testing.
Broadcasting an event should be one step easier than calling a method in an object-oriented
language, because a method call requires the programmer to specify a target object. Ibelieve that
this benefit of broadcast communication outweighs the cost of sacrificing some of the power of a
traditional object-oriented system. Example projects like the space invaders game indicate that we

have not given up the ability to create meaningful projects in Scratch.

2. What basic functionality should a broadcast-based communication system provide for novice programmers?

The heart of such a system should be named events. The core functionality of the system should
include the ability to (1) define scripts triggered by events, (2) broadcast an event, and (3) loop (or
just wait) until an event. In addition, I believe it is necessary to support events that contain
argument values, because these greatly extend the realm of possible projects we can create. The
system should therefore let us (1) broadcast an event containing an argument, and (2) access the
argument value for a received event. Finally, because simulating a procedure call is a useful

construct, such a system should possibly provide advanced primitives for (1) broadcasting an event

77

(perhaps containing an argument value) and waiting for an anonymous response event, and (2)
broaclcasting an anonymous response event (perhaps with an argument value) upon terminating a

script.

3. Should a broadcast-based programming language for novices include support for traditional procedures?

No, it should not, primarily because we can use "event calls" to simulate procedure calls, and
because we can provide clever primitives that imitate concise procedure call syntax. This reduces
the role of traditional procedures to their usage as privately scoped helper functions--a small role
that could be made redundant by a broadcast system that allowed us to limit the scope of event-
triggered scripts. Supporting procedures comes at a subtle but substantial cost. Procedure calls
require a tricky process model in which the flow of control for a single process moves between
scripts. This model is difficult to represent visually to a novice programmer, and does not appear
in a system with purely event-triggered scripts. More importantly, however, supporting scripts
that can be called as traditional procedures alongside event-triggered scripts means that novice
programmers will need to learn two very different mechanisms that play largely overlapping roles.
Every time the user creates a script, they will need to consider which kind of script they should
create. It would be preferable to avoid this confusion altogether by omitting traditional procedures

from the language.

4. Can an appropriate choice of metaphor make broadcast communication accessible to novice programmers?

My guess is that a metaphor can help a great deal, but only long-term user-testing will tell.
Although the language would become fairly compact without a metaphor, it would also appear
cryptic to a novice programmer, with procedure call syntax and references to "broadcasting". Our
goal is to help the novice enter the world of programming as smoothly as possible, with minimal
dependence on teachers and manuals. If a new programmer needs a manual or teacher to suggest

they think of broadcasting like "shouting" or "waving flags", then we are better off embedding that

78

helpful metaphor directly into the language. In addition, these metaphors are ideally suited for

activities in which kids act out a program, waving flags or shouting to signal each other's behavior.

5. Should broadcasted events be named by colors or strings in a programming language for novices?

[expect that the answer to this question will depend on how long the audience will be engaged
with the programming environment. As a two-hour introduction to computer programming, a
visual color-based metaphor for events (like waving flags) would be ideal. Such an introduction
would involve only simple projects, in which the programmer must only keep track of the
meanings of up to three different colors. String names may be too advanced for such an
introduction--especially for younger children. As I will discuss shortly, colored events could allow
us to provide visual feedback of events as they are broadcasted and received. To provide the same

feedback with strings would greatly clutter the screen.

For a user in a sustained programming experience lasting multiple days, I believe it will be better
to use string names for events. Ultimately, strings are more readable and meaningful, and will
therefore allow a programmer to go much further with the language, by creating more interesting

projects with many more event names.

79

80

XI. FUTURE WORK

In addition to resolving the important questions raised in this thesis, the Scratch project team
should consider several additional event-related tasks. In this last section, we will look at what

further efforts could improve upon the Scratch event system.

Additional Event Triggers

One area where further exploration would be beneficial concerns the types of event triggers. In
addition to cases where the programmer explicitly broadcasts an event, there are some situations
where we might prefer if Scratch broadcasted some helpful events for us. In the space invaders
program, we came across one such situation involving mouse events. Initially, we had a script that
repeatedly tested if the mouse button was down, and broadcasted an event if it was. Later, we
modified Scratch so that it automatically broadcasted a mouse click event whenever the user
clicked on the mouse button. We could extend this work to support many other kinds of
automatic events, including: clicking on a specific object, pressing keyboard buttons, and detecting
when a sensor value has crossed a threshold. Because there are so many actions that could be
interpreted as event triggers, part of the work that remains will be to determine which actions
should trigger Scratch to send automatic events, and which actions the programmer must

repeatedly test for manually (as we originally did for mouse clicks in space invaders).

Making Prototypes and Classes Easier

We can use our event system to simulate an object-oriented language's classes and instances, but
doing so is awkward and requires a fairly advanced programmer. The key idea is that the events an
object responds to in our broadcast paradigm serve to define a kind of object-oriented interface for
accessing that object. Although Scratch does not support classes of objects, we can copy an object

to create multiple objects with the same interface. However, if we decide to modify the

81

implementation of one such object, the others remain unchanged. The solution is to designate one

P] g g

object to be the prototype. We only modify the prototype, and make all copies from it. When the
rototype is modified, we must delete all copies and make new ones. To achieve this functionalit

P YP P y

programmatically, we can use Scratch's "copy" and "die" commands. In this scenario, the

prototype object copies itself automatically. When we are ready to make a change, we broadcast

an event to cause all the copies to die.

Now, the copies have the same interface as the prototype object, so we need to do some extra
work to prevent the prototype from dying, too. We therefore add an extra boolean "prototype"
field to all objects, which indicates if that object is the prototype or a copy. When we ask all copies
to die, all objects--including the prototype--will check if their "prototype" value is false, and if so,
will die. Now, the copies are completely identical to the prototype, so how can we make sure
they have a different "prototype" value than the prototype itself? The trick is that the prototype
sets its "prototype" value to false immediately before copying itself, and then sets its value back to

true.

Now, all of this requires a lot of work and a very clever programmer. The payoff of this work is
quite large, because classes can be a powerful tool for creating interesting projects. For example,
imagine how much better our space invaders project would be if we used classes to add support for
many aliens and multiple bullets on the screen simultaneously. It would therefore be worth
exploring further in this area, to see if the use of prototypes to simulate classes could be made
much easier by having some of the work built into Scratch. Perhaps Scratch could keep track of
which objects were prototypes and which were copies, and maybe we could add higher-level

primitives to simplify the programmer's work.

Broadcasting to a Network

Perhaps the killer application of the broadcast model would be to allow novice programmers to

create networked projects, in which objects from one project broadcast events across a network to

82

objects in other projects. In fact, broadcast-based communication is commonly used for network
communication. The Ethernet protocol is based on this idea, as is Linda (a paradigm in which
nodes communicate through a shared "tuple" space) [Carriero & Gelernter, 1989]. Perhaps this is
because of the simplicity of broadcast protocols, in which a node can broadcast a message without
being certain of which other nodes are connected. For similar reasons, our broadcast paradigm is

ideally suited for Scratch network programming.

Imagine that two Scratch users can connect their projects across a network. Then, when one
project broadcasts a blue event, the event would be received by any blue-event script in either

roject. No special network programming primitives would be needed, making networked
proj P prog gP) g

Scratch programs accessible to the novice programmer.

A fun example of networked Scratch projects would be a network "pong" game. Two Scratch
users would run identical (or nearly identical) projects on different machines connected over a
network. In each project, a "paddle" object would move horizontally along the bottom of the
screen, similar to the spaceship object in our space invaders game. A ball would appear on one of
the projects, and the user at that computer would use their paddle to hit the ball up off the screen.
The project would then broadcast the ball's state information (coordinates and velocity) to a ball
object in the other project. This second ball would align itself with this state information, and
begin traveling down its screen until the user at that computer used their paddle to hit the ball back
to the first computer. Imagine the power a novice would derive from programming such an

advanced project in their first day or week with Scratch!

The implementation to support networked events would be simple. First, the user interface would
need to allow a user to connect and disconnect from other projects, perhaps in some peer-to-peer
fashion or by registering with a Scratch network server. (There would be some additional work
required for a network arrangement in which an event can reach a computer in more than one path
across the network.) Then, whenever an event is broadcasted, in addition to being sent to all
objects and processes, it will now also need to go to a network manager. This component would

manage socket connections, and send event names and argument values as strings to other

83

connected Scratch sessions across the network. The network manager would also receive events as
strings from the network, package them up as Scratch event objects, and broadcast these events to

all local objects and processes. One consequence of sending events over the network is that it must
be possible to represent all event argument values as strings. In particular, this means that it would

not be possible to pass a Scratch object as an event argument over the network.

Adding Visual Feedback

Early user testing of Scratch's event system was conducted using a version of Scratch in which
events were represented by flag-waving. Afterward, members of the Scratch project team
commented on the difficulty that the kids had using flags. Researcher Margarita Dekoli wrote,
"The only thing that was fairly obvious [to the kids] was that in order to make things 'go' they
needed to click on the green flag on the toolbar, but I don't think it was because they realized its
connection to the green event. Suggestion: We need to indicate in some obvious way which
scripts are invoked on different events." This setback suggests that a future version of Scratch using
a flag-waving metaphor should provide visual feedback to novice programmers as to which flag is
waving and which scripts are being triggered. Research has shown that such feedback can help

make programming accessible to novices [Hancock, 2003].

Perhaps Scratch could feature a debug mode (possibly enabled by default) in which a colored flag
appears, waves, and disappears in the corner of the screen whenever an event is broadcasted. A
colored flash around an object could appear to indicate when it is broadcasting an event. Perhaps,
at the cost of slowing down the Scratch program running, such a flash could radiate outward, to
indicate the notion of "broadcasting". Whenever an event-triggered script is running, the
associated object could glow in the corresponding color. (The display would also need to show
when an object is running multiple scripts triggered by different colors.) We could even show
what colors an object is listening for, although this may not help as much as it would clutter the
screen and potentially confuse users. Finally, it might be helpful if, in some corner of the screen or

in an optional extra window, a log of events appeared, with each event scrolling by and shown in

84

the appropriate color, along with information about who sent the event and what argument value
was passed with it. (It should be noted that many of these ideas take advantage of an event's color.
It may be difficult or impossible to provide similar feedback for "shouting" or other metaphors in

which events are not named by colors.)

Implementing all these features would probably be overwhelming, but a carefully chosen subset
could greatly illuminate the behavior of the Scratch event system. Ultimately, continued user-
testing can teach us a great deal about what kind of feedback is needed to make broadcast-based

programming accessible to novices.

Introducing Events to Novices

If, given the visual feedback described, novices continue to struggle with Scratch's event system,
then we may want to explore methods for teaching events to those who have not programmed
before--especially for younger children. We should be careful to keep any instruction minimal and
engaging, and to encourage students to begin their own programming explorations in Scratch as
soon as they are ready. One promising idea is to have children hold actual colored flags (or some
object appropriate for whatever metaphor is chosen for Scratch, such as using paper megaphones to
"shout" instructions). Children could then act out some simple example programs, in which some
kids are taught to behave in specific ways when they see colored flags waved by other children.
Such an activity could go a long way toward letting children internalize Scratch's event mechanism.
If the activity is done first, then programming may feel like a simple game by the time children are
introduced to the Scratch environment. In fact, acting out event-based programs may be an
excellent activity to teach programming concepts to children--even without also introducing

Scratch.

If, after exploring all these methods to make broadcast-based programming accessible to novices,
we achieve only limited success, then we will need to reconsider our choice of communication

paradigm. Personally, I believe that any alternative to our broadcast communication model is

85

likely to be more difficult for novice programmers to learn. As much as we would like to develop
an object-based programming language that requires minimal instruction to learn, perhaps we will
find, in the end, that there is just no substitute for an encouraging teacher and a formal learning

environment, and that there is no shortcut to learning to program.

86

REFERENCES

[Begel, 1996] Begel, A. (1996). LogoBlocks: A Graphical Programming Language for Interacting
with the World. Unpublished Advanced Undergraduate Project, MIT Media Lab.

[Carriero & Gelernter, 1989] N. Carriero, N., and Gelernter, D., "Linda in context,"

Communications of the ACM, vol. 32, no. 4, April 1989.

[diSessa, 2000] diSessa, A. (2000). Changing Minds: Computers, Learning, and Literacy. MIT

Press: Cambridge, MA.

[Guzdial, 2001] Guzdial, M. Squeak: Object-Oriented Design with Multimedia Applications.

Upper Saddle River, NJ: Prentice Hall, 2001.

[Hancock, 2003] Hancock, C. (2003). Real-Time Programming and the Big Ideas of

Computational Literacy. Unpublished PhD dissertation. MIT Media Laboratory. Cambridge, MA.

[Kay, 1991] Kay, A. (1991). Computers, Networks and Education, Scientific American,
September, 1991, pp. 138-48.

[Papert, 1980] Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic

Books: New York.

[Papert, 1993] Papert, S. The Children's Machine: Rethinking School in the Age of the

Computer. New York: Basic Books, 1993.

[Resnick, Kafai, & Maeda, 2003] Resnick, M., Kafai, Y., Maeda, J., et al. (2003). A Networked,
Media-Rich Programming Environment to Enhance Technological Fluency at After-School Centers
in Economically—Disaclvantaged Communities. Proposal to the National Science Foundation. MIT

Media Laboratory.

87

[Resnick, Rusk, & Cooke, 1998] Resnick, M., Rusk, N., and Cooke, S. (1998). The Computer
Clubhouse: Technological Fluency in the Inner City. In Schon, D., Sanyal, B., and Mitchell, W.
(eds.), High Technology and Low-Income Communities, pp. 266-286. MIT Press: Cambridge,
MA.

[Steinmetz, 2001] Steinmetz, J. (2001). Computers and Squeak as Environments for Learning. In
Squeak: Open Personal Computing and Multimedia, Rose, K. and Guzdial, M. (eds.). Prentice
Hall: New York.

88

