
Out of Flatland:
Towards 3-D Visual Programming

Ephraim P. Glinertt

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York 12180

E-mail: glinert@cs.rpi.edu

Abstract

The tantalieing potential of eo-called visual and iconic
programming remains largely unfulfilled because of
several unresolved issues. After briefly enumerating
the open problems, we review the BLOX methodology
which we recently introduced in an effort to overcome
some of them. BLOX has been presented in the lit-
erature to date in terms of multiple planar diagrams,
which impart to the methodology what may be termed
a 2.5-dimensional appearance. In the main part of this
paper, we show that this is actually but a special, re-
stricted case of the generd methodology, which nat-
urally encompaesee three dimensions and more. We
then argue that it ia often unnatural for programmers
to compose programs, to view data structurea, and to
perform other computer-related activities, in less than
3-D.

tThia work was supported, in part, by the Xerox Corporation.

1 Introduction (Or: From a 1-D
Past to a 2.5-D Present)

Over a century ago, the Shakespearean scholar and ama-
teur mathematician Edwin Abbott explored a hypothet-
ical two-dimensional world he called Flatland [11, whose
inhabitants were totally unaware of the existence of a
three-dimensional Space and the startlingly novel views
of the universe that it could provide.

In our view, for technical reasons programming has
up to now been similarly artificially confined to just a
small part of the programming environment Space.

In the beginning, all programs were one-dimensional
(linear) text strings. For many years, these text strings
were broken into segments and inscribed on punched
cards. Eventually, the medium of expression became
glowing phosphor on the glass face of a CRT.

In 1975, David Canfield Smith’s dissertation [2]
heralded a new era in programming, in which the in-
creased power of computing engines, and their graph-
ics capabilities, made it possible to try to utilize the
two-dimensional CRT screen as more than a mere back-
drop for the wrap-around of a linear text string. Two
new styles of programming resulted. In visual enuiron-
merits, multiple windows and graphical elements play

292
CH2468-7/87/0000/0292$01 .OO 0 1987 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F42040.42095&domain=pdf&date_stamp=1987-12-01

prominent roles alongside text (cf. [3,4,5], and commer-
cial products such as the Apple Macintosh human-OS
interface and spreadhseet programs). In iconic enoi-
ronments, users compose programs by juxtaposing small
images, commonly termed icons; in such environments,
it is therefore possible to employ well-known “classical”
graphical aids to programming such as flowcharts, Nassi-
Shneiderman structure diagrams and augmented transi-
tion networks, as direct means of human-computer com-
munication (cf. [6,7,8]).

The past decade has witnessed the accumulation
of an impressive body of evidence, that visual and
iconic environments may prove highly beneficial, both to
computer-users in general and to programmers in partic-
ular. This is because the computer’s ability to represent
in a visible manner normally abstract and ephemeral as-
pects of the computing process such as recursion, concur-
rency and the evolution of data structures through time,
can have a remarkable and positive impact on both the
productivity of programmers and their degree of satis-
faction with the working environment. Thus, it was not
unusual for users of the author’s PICT system [6], for
instance, to make comments such as “[PICT] would be
great for . . . home computers, [as] people wouldn’t need
to learn a computer language.” Comments such as this
are significant not because they are true, for they aren’t;
PICT users did learn a programming language, as well
as a simple editor! The important point is that these re-
marks are indicative of the users’ positive frame of mind
after coming into contact with the PICT system for the
first time.

The successes of the visual and iconic approaches
notwithstanding, the open problems are still numerous
and substantial:

l What might constitute an appropriate hard science
foundation for the field? Among other things, we
sorely need:

1. Formal models that might lead to counterin-
tuitive results being proven.

2. Good notations, analogous to the Backus-
Naur Form [9] for textual languages, for pre-
cisely specifying human-computer interfaces
and the visual languages that generate them.

l Can visual programming scale up, so that it will be
useful for more than the “toy” programs typically
written by novices?

s Can we find, for programs and even more so for
data structures, suitable and uniform representa-
tions of a mixed textual-graphical nature?

l What constitutes a good “graphical vocabulary?”

l Can we define and validate useful metrics for visual
and iconic programming? There are two facets to
this problem:

1. Metrics for assessing the relative merits of al-
ternative environments.

2. Metrics for comparing programs composed in
any given, single environment.

The solutions to many of the problems just enumer-
ated will most likely turn out to be mutually depen-
dent upon one another. In a series of recent papers
[10,11,12,13,14] we have introduced a new, paradigm-
independent methodology of a mixed textual-graphical
nature, which we call BLOX, and provided evidence in
support of OUT contention that an integrated approach
based upon this methodology may be one way to attain
some of the solutions we seek (cf. 115,161 for another ap-
preach) .

After reviewing the BLOX methodology in the next
section, we will propose in section 3 a more radical ap-
proach to resolving these same issues. As BLOX has been
presented in the literature up to now, and as it has been
used in the design of several environments, the method-
ology gives the impression of being essentially planar. In
this paper we will show that this is an illusion, and we
will in fact extend the methodology to three dimensions.

We will then argue that it is often unnatural to com-
pose programs, to view data structures, and to perform
other computer-related activities, in less than 3-D. Con-
sequently, the question arises: Has the time not come for
programmers to flee their Flatland prison for the freedom
of Space?

2 Review of the BLOX Method-
ology in 2.5-D

The classical graphical representations for programs that
we referred to in passing in the introduction were all orig-
inally developed for use with paper and pencil. As a re-
sult, they are two-dimensional and static. The diagrams
in question often need to be drawn by hand, a tedious
chore for those of us who are not expert draftsmen. Be-
cause the graphical representation is distinct from the
actual program associated with it, there is often little
more than a superficial resemblance between the two af-
ter debugging is completed.

A suitable interactive human-machine interface can
overcome some of these problems, by mechanizing di-
agram generation and by unifying the graphical repre-
sentation of a program with the program itself. Nev-
ertheless, it remains difficult to effectively handle large,

293

complex programs. One tends either to end up with some
form or other of the proverbial spaghetti ball, or to find it
necessary to mumble “encapsulate!” and resort to hand-
waving.

Some investigators believe that the two-dimensional
nature common to the classical graphical representations
is part of the problem. Thus, they have advocated the
use of multiple, interconnected planar diagrams, in what
we call a 2.5-dimensional approach [17,18,19].

BLOX representations take all of these ideas one step
further. In particular, they have been designed from their
inception for display by a computer on a VDU, with far-
reaching consequences.

Programming environments based on the BLOX
methodology are termed BLOX worlds. The elements of
these worlds present an external facade patterned after
familiar children’s toys. For the purposes of this section,
and in conformity with the manner in which the method-
ology has been presented in the literature up to now, the
elements are tiles analogous to the pieces of which jigsaw
puzzles are composed. However, BLOX tiles are at once
real and imaginary, for unlike their counterparts in the
physical world they can hide “miniature” or lower level
substructures which they encapsulate (note that this im-
plies a 2.5-D approach). BLOX tiles are also dynamic
rather than static, in that their visible features (e.g.,
size, color, and edge contour or shape) may all change

under appropriate circumstances - say, when elements
are repositioned on the screen (location/context induced
change), or as sundry events transpire (temporally in-
duced change).

Users compose BLOX programs by building struc-
tures which consist of one or more joined tiles, accord-
ing to the usual jigsaw-puzzle lock and key metaphor
in which protrusions are plugged into correspondingly
shaped indentations so that the two juxtaposed tiles in-
terlock. Depending upon the applications domain, the
designer of a BLOX world can, if appropriate, impose
additional constraints on which tiles or blocks may be
joined. For example, the colors on the interlocking edges
or, more generally, the images on the tiles might have to
be compatible in some sense.

To elucidate some of the aforementioned concepts,
we briefly discuss two examples. In each case, just a few
salient features will be described.

Consider first a Proc-BLOX world for programming
according to the imperative procedural paradigm. In this
environment we would have available tiles which corre-
spond to constructs such as the clause or BLOCK (a se-
quence of one or more statements, often enclosed, in tex-
tual environments, between reserved words akin to the
Pascal BEGIN and END), and the IF and WHILE condi-
tionals. However, we would most likely not wish to apply
the BLOX mechanism to details at too low a level (e.g.,

Figure 1: Possible Realizations of Some Imperative Pro-
cedural Constructs Using Tiles.

individual characters in identifiers, or the symbols that
denote the various arithmetic operations). Thus expres-
sions, say, in assignment statements would be typed in
via the conventional keyboard and parsed incrementally
(by an interpreter) to assure syntactic correctness.

Fig. 1 illustrates how the aforementioned tiles might
look. The actual configurations of knobs and sockets
assigned to the various tiles in the Figure are clearly ar-
bitrary and, as a consequence, immaterial. Note how

begin
Sl;
if not I1 then

begin
s2; s3;

end
else

while Ll do
begin

if 12 then S4 else S5; S6;
end;

while L2 do S7;
S8;

end.

Figure 2: Schematic Fragment of a Pascal Program.

the lock and key metaphor incorporated in the design
of the tiles is used to effectively enforce proper syntax.
Note, also, how the shapes of the various instances of the
BLOCK tile have been dynamically tailored by the en-
vironment to the context in which they are being used.
We remark that, in an actual program, the code seg-
ments corresponding to the alternative branches, loop
bodies and Boolean expressions associated with the IF
and WHILE statements could be individually encapsu-

294

lated in the appropriate tiles, thereby fostering top-down
program design. To see how this might work, consider
the Pascal program fragment in Fig. 2; Fig. 3 shows the
corresponding Proc-BLOX representation. Note that in
Fig. 3, the subuniverses contained in some of the tiles
have been exploded and encircled for the reader’s ben-
efit, although they would not normally all be visible at
one time to the Proc-BLOX user.

Let us turn now to an entirely different domain,
namely that of VLSI and ULSI design. This is a complex
task that commands attention at a multitude of differ-
ent conceptual levels, including that of complete proces-
sors, processor modules as logical units, various gates for
the specification of individual logic circuits, and transis-
tors of diverse types, not to mention power sources, sig-
nals and wires of multiple types. A VLSI-BLOX world
would therefore need to provide access to several families
of tiles, along with appropriate tools for working with
them. The tiles which denote wires would be particu-
larly interesting, as their shapes would undoubtedly be
of a piecewise rubber band nature so that they could
stretch and turn corners at will, thereby allowing a wire
to link arbitrarily positioned components. These tiles
would also probably possess variable translucency, so as
to allow sharp differentiation between insulated crossings
and junctions. Alternative and sometimes incompatible
technologies associated with the physical realizations of
certain electronic units could be easily accommodated,

Figure 3: Tile Representation of the Program Fragment
Shown in Fig. 2.

through augmentation of the lock and key metaphor, if
necessary, with appropriate background colors.

Fig. 4 shows two simple circuits constructed from
tiles associated with the gate level of our hypothetical
VLSI-BLOX world. We are quick to stress that this
Figure is intended to convey to the reader an under-
lying concept, rather than to depict a design that one
might realistically generate on the screen using the envi-
ronment at hand. Thus, their appearance in the Figure
notwithstanding, the edges of the tiles could be made in-

295

(b)

Figure 4: Possible VLSI-BLOX Realization of Two Sim-
ple Combinational Circuits: (e) Half Adder; (b) Full
Adder.

visible after insertion into a circuit, so as not to clutter
up the image with unnecessary and potentially confus-
ing details. Furthermore, the simple gate level diagrams
shown notwithstanding, we are of course aware that floor-
plans at the higher functional levels, on the one hand, and
standard cell or metal layout, on the other hand, would
in most instances be the true targets of a VLSI-BLOX
world.

As the examples make clear, the BLOX methodology
is independent of the underlying programming paradigm,
and it also supports embedding of the various classical
graphical representations for programs. To see this, note
that:

Proc-BLOX adheres to the imperative procedural
paradigm, whereas VLSI-BLOX may be viewed as
either a constraint based environment or one that
is functional with a graphical front end.

Proc-BLOX is not flowchart based, because a pro-
gram’s logical structure and flow of control are
expressed in a uniform manner by a combina-
tion of (1) joining tiles together in appropriate
ways, and (2) encapsulation. Yet BLOX can sup-
port flowchart representations, for one can easily
imagine an analog to the VLSI-BLOX world in

which gates and wires are replaced by conventional
flowchart nodes and flow-of-control paths, respec-
tively.

Having mentioned color in passing several times, it
behooves us to direct a few words specifically to the po-
tential role of this attribute in a BLOX world. Although
some might argue that color is not essential to the success
of a human-computer interface, we fervently believe that
its judicious use can prove highly beneficial. Of course,
highlighting springs to mind as one possible application,
but that’s not really the important issue. In complex en-
vironments, it is crucial that a hierarchy or vocabulary of
graphical clues (201 be provided to facilitate user selection
of pairs of tiles that may be joined. A simple hierarchy
of this type, in which color supplements the information
imparted by shape, might include (in descending order):
(a) background color or image; (b) edge color or pat-
tern; and (c) edge contour. This latter attribute could
be used to designate subfamilies of compatible elements
through use of a master key concept. The arc length of
appropriate edges would first be subdivided (by the sys-
tem designer), after which one or more segments of the
contour would be varied while maintaining the remainder
identical for all members of the family.

The preceding discussion has centered on two hy-
pothetical examples. Detailed descriptions of the (com-
pleted) PC-TILES environment for imperative procedu-

ral programming in the small, and of the BLOX-based
multiparadigm human-computer interface to OOCADE,
an integrated system-level design environment for com-
plex circuits (implementation in progress), may be found
elsewhere (21,221.

To complement practical applications for BLOX
such as these, we have recently proposed the class-
instarzce pair, or CLIP, model for visual programming
environments [23,24]. We have shown that BLOX pro-
vides a natural embodiment for the CLIP model, which is
equally well suited to sequential, parallel and distributed
environments. Furthermore, CLIP can support all three
major categories of interfaces for programming environ-
ments: (a) the traditional textual; (6) the mixed textual-
graphical, as employed in classical graphical representa-
tions for programs such as those referred to previously;
and (c) the highly graphical, as exemplified by systems
such as Borning’s remarkable ThingLab [25]. The proof
for the textual case (a) is based on Knuth’s well known
“boxes and glue” model [26, chapters 11-121.

3 Into the Future: From 2.5-D
to 3-D and More

The last paragraph of the preceding section implies, that
a textual 1-D BLOX methodology can be obtained as a
degenerate version of the 2.5-D case we have described.
In this section we will show the converse: BLOX is unique
in comparison to the classical graphical representations
for programs, in that the 2.5-D version is but a spe-
cial, restricted instance of the general case, which nat-
urally encompasses three dimensions and more. (About
a decade ago, the English researcher R. W. Witty at-
tempted to extend the concept of a flowchart to three
dimensions via his so-called “dimensional flowcharting”
(2’71. However, his ideas were unfortunately ahead of
the technology of the time.) The discussion in this sec-
tion will also clarify our reasons for naming our BLOX
methodology with an acronym derived as a synthesis of
the word blocks with a contraction of BLack boxes.

But first, why do we advocate programming in three
dimensions? Many readers will surely argue (and rightly
so, as we pointed out in the introduction), that we don’t
yet know how to properly utilize two dimensions!

We do not propose eschewing 2-D visual and iconic
programming for 3-D. We do propose broadening our
horizons to include the third dimension when appropri-

ate, for several reasons. For one thing, the technology
is now available in (top of the line) workstations, and it
will rapidly become affordable to all. More importantly,
however, are the precedents set by analogy with other
branches of science.

There are numerous examples in mathematics, for
instance, where extending the domain of discussion al-
lows one to solve seemingly intractable problems relating
to the original, restricted domain. Two familiar examples
of this are the introduction of fractions to allow division
of integers without remainder, and the fact that as a rule
the roots of a quadratic polynomial P(z) = ax’ + bx -i- c
with real coefficients lie in the complex plane.

Furthermore, we repeatedly find cases throughout
the natural sciences where it is either actually provable,
or generally accepted on the basis of empirical evidence,
that 3-D is significantly different from 2-D. The follow-
ing short list of examples should serve to illustrate the
pervasiveness and variety of this phenomenon.

1. In mathematics:

l The number of regular polygons, which is fi-
nite (and indeed small) in all Euclidean spaces
save that which is 2-D, where it is infinite [28].

l Various phenomena related to random walks,
including the probability that the origin will
ever be revisited 1291.

296

l A host of combinatorics problems such as 3-
DIMENSIONAL MATCHING and I-SATIS-
FIABILITY, which are known to be NP-
complete, vs. Z-DIMENSIONAL MATCH-
ING and 2-SATISFIABILITY, which are
solvable in polynomial time [30].

l Numerous results in topology, including Bor-
suk’s Theorem, which implies that in Eu-
clidean spaces of odd dimension every continu-
ous mapping of the surface of the unit sphere
onto itself (or the negative mapping) has a
fixed point, whereas in 2-D a simple rotation
about the origin generally does not 1311.

2. In physics:

l Phenomena associated with fluid flow and tur-
bulence, which are often stable in 2-D but un-
stable in 3-D, or vice versa 1321.

3. In thermodynamics:

l The so-called Ising model [33] for describing
molecular state transitions has several analyt-
ical solutions in the 2-D case, but none are
known for 3-D. Moreover, the 2-D solutions
imply properties of materials which are often
not experimentally confirmed, whereas it is
expected that 3-D solutions may better cor-
respond to the real world.

Might not a similar situation hold for programming, too?
And, if it does, ought we not to exploit it to our advan-
tage?

Consider, for example, a tree each of whose elements
is a complex record. In a 3-D space the record fields can
be turned at an angle of 90’ to the interelement links.
Proper choice of vantage point then allows us to view
either the overall structure or the contents of certain ele-
ments, as illustrated in Figs. 5(a) and 5(b), respectively.
Clearly, for data structures such as this it would be very
useful to have a true 3-D display that could be rapidly
and continuously rotated in any direction at the user’s
command.

Because the majority of existent programming lan-
guages were designed with 2-D considerations in mind,
this domain does not readily provide examples as satis-
fying as those relating to data structures. (We intention-
ally say 2-D here rather than l-D, despite the purely
textual nature of most languages, because for more than
two decades the choice of constructs provided has usu-
ally been determined, at least in part, by the tenets of
so-called “structured programming” - a concept which
to many refers essentially to the avoidance of spaghetti
balls in flowcharts.)

Nevertheless, it is clear that some of the emerg-
ing languages, such as the DOD’S Ada-based VHDL [34]
for designing electronic circuits, are already problematic.

(4

(b)

Figure 5: Two-Dimensional Projections of a Tree Struc-
ture: (a) In the X - Y Plane, Showing the Interelement
Links; (6) In the X- 2 Plane, Showing the Fields Com-
prising an Element.

Why? VHDL provides concurrent as well as sequential
statements, in an attempt to deal with parallelism in
complex entities such as CPUs and arrays of memory
cells. Upon a first encounter with the language it is im-
mediately obvious that text (1-D) is insufficient to the
task at hand; schematic (graphical) capture of designs is
imperative in this context (351. But 2-D or even 2.5-D
will at best provide a temporary solution, because the
languages of the near future will surely need to address
ever more exotic domains: distributed computing, say, or
3-D chip design. As Reiss has recently reiterated [16], in
the next generation of programming environments pro-
grammers should be able to build programs by putting
together collections of objects to yield an executable pro-
totype, so that designers can experiment directly with a
design as they work on it.

Even the sequential statements in VHDL are uncon-
ventional (and, in some cases, controversial [36]) when
compared, say, to those of Pascal. The WHILE, for ex-
ample, is augmented with both NEXT and EXIT capa-
bilities which violate traditional views of structured pro-
gramming.

The conclusion is inescapable. It is time for com-
puter science to begin exploring revolutionary rather
than evolutionary means of programming, in the hope
that the tools will be ready when required.

How, then, can we extend BLOX to 3-D? Actually,

297

as it turns out this can be done quite naturally; indeed,
it is almost child’s play. In the simple, 2.5-D form which
we described in the previous section, BLOX elements
were tiles analogous to the pieces of which jigsaw puzzles
are composed. In 3-D, these elements would instead be
opaque blocks much like those found in LEGO* or Bris-
tle Blocks.* As before, users would compose programs
by building structures consisting of one or more elements
joined according to the lock and key metaphor, in which
knobs are plugged into correspondingly shaped sockets.
Again, depending upon the applications domain, the de-
signer of a BLOX world could, if appropriate, impose
additional constraints on which blocks may be joined;
for example, the colors or, more generally, the images on
the touching faces might have to be compatible in some
sense.

We noted earlier that, unlike their counterparts
in the physical world, BLOX elements can encapsulate
lower level substructures. In 2-D this analogy is slightly
strained. In 3-D, however, it is completely natural, since
we live in a three-dimensional universe; indeed, it is anal-
ogous to what toddler’s toys such as the Child Guidance
Kitty-In-The-Kegs do.

Is our approach to defining the syntax of elements in
3-D BLOX worlds respectable, based as it is on children’s
toys? We claim that the answer is a resounding “yes!”
To cite but a single precedent from another realm of sci-
entific endeavor, Linus Pauling’s renowned ball-and-stick
models for complex molecules are an obvious extension of
the Child Guidance Tinkertoy.’ Note that the specifica-
tion and elucidation of molecular structure is yet another
domain where a 3-D perspective (i.e., the ball-and-stick
model) has turned out to be a valuable supplement to
traditional 1-D and 2-D methods (in this case, textual
formulas and symbolic planar diagrams, respectively).

Let us close this section by speculating on some of
the unorthodox things the elements of 3-D BLOX worlds
might do (these may or may not eventually prove to have
some “use”). The semantic routine associated with a
block might in part depend upon geometric or spatial
information such as the color(s) of one or more of the
block’s faces, the orientation of the block in space, or
the immediate neighbors to which it is joined and their
relative positions. In addition, as we have pointed out
elsewhere [23], a block’s semantic routine could trip trig-
gers associated with other block(s) in a variety of ways
(triggering can be thought of, in its simplest form, as
activation in some sense); the blocks so affected might
be immediate neighbors (local), or located at a distance

*LEG0 is a trademark of Interlego, A.G.
5Bristle Blocks is a trademark of Playskool, Inc., a Hasbro

Bradley company.

‘Child Guidance, Kitty-In-The-Kegs and Tinkertoy are
aII trademarks of CBS Toys, a division of CBS, Inc.

(global). Unusual actions which might be incorporated
into a BLOX world could include: cause motion (e.g., ro-
tate part or all of a structure); change the configuration
of knobs and sockets, or the image(s), on one or more
faces of some block(s); cause the “spontaneous genera-
tion” of new blocks and structures, or the replication or
deletion of (groups of) blocks.

4 Summary

Expansion of the programmer’s work space to three di-
mensions may make it possible to design new (visual) lan-
guages and programming environments, which will differ
radically from those in use today and be free of certain
drawbacks that plague us at present.

The use of three dimensions for programming cannot
be considered an automatic panacea. There are potential
pitfalls to be avoided. In the BLOX methodology, for in-
stance, the set of constructs comprising some future pro-
gramming language might inadvertently be designed so
as to allow one block to become completely surrounded
by others under certain circumstances. This could make
it difficult for users to access parts of their programs with
an editor, or to watch execution at run time. (A possible
solution to this particular problem could be to make the
blocks translucent to a degree.) Nevertheless, we believe

that our BLOX methodology, which is naturally exten-
sible from 1-D to 2.5-D, and then in turn to 3-D and
more, may prove a useful tool in the design and imple-
mentation of these brave new worlds.

Acknowledgments

The author thanks Joseph E. Flaherty, W. Randolph
Franklin, Mark Goldberg, David McIntyre, Edwin H. Rogers,
and Thomas Spencer for many helpful comments.

References

PI

PI

131

141

E. A. Abbott. Flatland - A Romance of Many Dimen-
sions. Dover, New York, NY, 1952.

D. C. Smith. PYGMALION: A Creative Programming
Environment. PhD thesis, Dept. of Computer Science,
Stanford University (Technical Report STAN-CS-75-499),
1975.

W. Teitelman. A Display Oriented Programmer’s Assis-
tant. Znt. J. Man-Machine Studies, 11(2):157-187, March
1979.

H. Lieberman and C. Hewitt. A Session with TINKER:
Interleaving Program Testing with Program Design. In

298

Conf. Record of the 1980 LISP Conference, pages 90-99,
Stanford University, Stanford, CA, August 25-27 1980.

[5] S. P. Reiss. PECAN: Program Development Systems that
Support Multiple Views. IEEE Trans. on Software Engi-
neering, SE-11(3):276-285, March 1985.

[S] E. P. Glinert and S. L. Tanimoto. PICT: An Interactive,
Graphical Programming Environment. IEEE Computer,
17(11):7-25, November 1984.

[7] B. E. J. Clark and S. K. Robinson. A Graphically Inter-
acting Program Monitor. Computer Journal, 26(3):235-
238, August 1983.

[8] R. J. K. Jacob. A State Transition Diagram Language
for Visual Programming. IEEE Computer, 18(8):51-59,
August 1985.

(91 P. Naur (editor). Report on the Algorithmic Language
Algol60. CACM, 3(5):299-314, May 1960.

[lo] E. P. Glinert. Towards “Second Generation” Interac-
tive, Graphical Programming Environments. In Proc. 2nd
IEEE Computer Society Workshop on Visual Languages,
Dallas, pages 61-70, June 25-27 1986.

[ll] E. P. Glinert. Interactive, Graphical Programming En-
vironments: Six Open Problems and a Possible Partial
Solution. In Proc. COMPSAC ‘86, pages 408-410, IEEE
Computer Society Press, 1986.

[12] E. P. Glinert, J. Gonczarowski, and C. D. Smith. An Inte-
grated Approach to Solving Visual Programming’s Prob-
lems. In Proc. 2nd Int. Conf. on Human-Computer In-
teraction, Honolulu, August l&15 1987.

[13] E. P. Glinert. Towards Software Metrics for Visual Pro-
gramming. Technical Report 87-16, Dept. of Computer
Science, Rensselaer Polytechnic Institute, 1987.

[14] E. P. Glinert and C. D. Smith. Generalized Halstead
Metrics for Iconic Programming? In Proc. Workshop on
Visual Programming Languages, Linkoping, August 19-21
1987.

[15] S. P. Reiss, E. J. Golin, and R. V. Rubin. Prototyping Vi-
sual Languages with the GARDEN System. In Proc. 2nd
IEEE Computer Society Workshop on Visual Languages,
Dallas, pages 81-90, June 25-27 1986.

[16] S. P. Reiss. Working in GARDEN: An Environment for
Conceptual Programming. To appear in IEEE Software.

(171 M. E. Dickover, C. L. McGowan, and D. T. Ross. Soft-
ware Design using SADT. In Proc. ACM Annual Confer-
ence, Seattle, pages 125-133, October 17-19 1977.

(181 D. T. Ross. Applications and Extensions of SADT. IEEE
Computer, 18(4):25-34, April 1985.

[19] M. P. Stovsky and B. W. Weide. STILE: A Graphical
Design and Development Environment. In Proc. COMP-
CON ‘87, pages 247-250, IEEE Computer Society Press,
1987.

(201 G. F. McCleary Jr. An Effective Graphic ‘Vocabulary”.
IEEE Computer Graphics and Applications, 3(2):46-53,
March/April 1983.

[21] E. P. Glinert and C. D. Smith. PC-TILES: A Vi-
sual Programming Environment for Personal Computers
Based on the HLOX Methodology. Technical Report 86-
21, Dept. of Computer Science, Rensselaer Polytechnic
Institute, 1986.

[22] M.-J. Chung, E. P. Glinert, M. Hardwick, E. H. Rogers,
and K. Rose. Toward an Object-Oriented Iconic Environ-
ment for Computer Assisted VLSI Design. In Proc. 2nd
Israel Conf. on Computer Systems and Software Engi-
neering, Tel Aviv, May 6-7 1987.

[23] E. P. Glinert and J. Gonczarowski. A (Formal) Model for
(Iconic) Programming Environments. In Proc. INTER-
ACT’87, 2nd IFIP Conf on Human-Computer Interac-
tion, Stuttgart, September l-4 1987.

(241 E. P. Glinert and J. Gonczarowski. Applications of the
CLIP Model for (Iconic) Programming Environments. To
appear.

[25] A. Borning. The Programming Language Aspects of
ThingLab, a Constraint Oriented Simulation Laboratory.
ACM ToPLAS, 3(4):353-387, October 1981.

[26] D. E. Knuth. The TeXbook. Addison Wesley, Reading,
MA, 1983.

[27] R. W. Witty. Dimensional Flowcharting. Software -
Practice and Ezperience, 7:553-584, 1977.

[28] H. S. M. Coxeter. Regular Polytopes. Macmillan, New
York, NY, 1963.

[29] I?. L. Spitzer. Principles of Random Walk. Van Nostrand,
Princeton, NJ, 1964.

[30] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman 8 Co., New York, NY, 1979.

[31] J. Dugundji. Topology. Allyn and Bacon, Boston, MA,
1966.

[32] G. K. Batchelor. An Introduction to Fluid Dynamics.
Cambridge University Press, Cambridge, UK, 1967.

[33] H. E. Stanley. Introduction to Phase Transitions and
Critical Phenomena. Oxford University Press; New York,
NY, 1971.

[34] Anonymous. VHDL Language Reference Manual, v. 7.2.
Intermetrics, Inc., Bethesda, MD, 1985.

[35] K. Bakalar. Oral communication during the VHDL Train-
ing Seminar held at UTMC Inc., Colorado Springs, CO,
May 18-22 1987.

[36] W. Van Snyder. Multilevel EXIT and CYCLE aren’t so
bad. ACM SIGPLAN Notices, 22(5):20-22, May 1987.

299

