APPENDIX: A Smalitalk Simulation of the Interpreter

Class new title: 'Context'; . .- -~ . S
fields: 'sender method pc tempframe stackptr mclass receiver';
asFollowsl " S ST . _
Contexts carry the dynamic state of Smalltalk processes. They are accessed -in efficieht' ways- by
the microcode interpreter. At the same time, they ure instances of a perfectly normal Smalltalk

class. In this way, the full generglity of Smalltalk can be applied to examining and tracing the
progress of Smalltalk execution. ' ‘ C A

The code below differs from the actual code in Smalltalk-76 in that it corresponds to the slightly
simplified categories of the fext, und has not been carefully checked for of f-by-1 errors.
Beyond the specifics in the text, the interested reader will want to know:
ne is the subscript message, as in: tempframe‘lobits - o -

- .except for assignment, "¢" is treated as an agglutinating = o

message part, as in: £°i ¢ self pop o : :
- the » symbol indicates conditional execution; B
" if the preceding value is trus, then the following body. of code

" is executed, and control exits the outer (!) brackets. This "if-only”

form serves to build dispatch tables as in the message "next” below
- the default value returned from any message is "self”, the receiver

of the message. Other values may be returned with the " symbal.

The messages "instfield: n” and "instfield: ne val”, which are used below to read and write the
n-th field of an instance, clearly violate the principle of modularity. This reflects that the buck
stops here, and these primitive messages appear nowhere else in the system. .

Access to Fields ‘ _

sender: sender method: method pe: pe tempframe: tempframe stackpts: stackptr
. _mqla.ss: mclass receiver: receiver "initializes all fields”

Simulation of the Interpreter -

step | byte lobits "dispatch on next code syllable"
[byte « self nextbyte.~ : i
lobits « byte|l6. :)
byte/16=1=[self push: receiver instfield: lobits]; "load from instdnce”

=2»[self push: tempiramelobits]; "load from temps ((and args)”
=35 [self push: (method literals: lobits)]; = “load from literals”

=4[self push: (method literals: lobits) value]; “load indirectly from literals”
-=5x[self push: self instfield: lobits]; "load from this Context"

=6=>[self push: G(“1 0 1 2 10 true false nil)*lobits]; “frequent constants”
=T [Tself send: Emethod literal: lobits)];)

=8=[fself send: (SpecialMessages lobits)]; “frequent messages"
=93 [lobits{8>[pe+ pe+lobits] © "short jump forward"
self pop=»[] pce petlobits-87; "short branch if falsz and pop”
=10=[1ohits<8=[pce lohits-3*256+self nexthyte+pc]'long jump forward and bach”
self pop=[pe+ petl]; ‘ "ship extension byte on true"
. pe+ lohits-11#256+self nextbytetpe]; “long bfp"
=11-s[labits=0=[self pop]; "pop stack”

=1»[self store: self top into: self nextbyte]; "store")
=2=[setf store: self pop into: self nextbytel; “store and pop”

=3=[sender push: self top. Tsender]] freturn value to sender”
store: val into: field | lobits . "same encoding as above"”
[lobits « byte[16.
field/16=1>freceiver instfield: lobits « vall; "store into instance”
. =2>[tempframe lobits + vall; "store into temps (and args)"
=3={ user notify: ‘invalid store']; "can't store into literals”
=4o{ (method literals: lobits) value « val];"store indirectly through literals”
=53 self instfield: lobits « val] "store into this Context"
sond: message | class meth callee t i "send o message"

[class « self top class. .
until® (methe class lockup: message) do8 "look up the metlod"

A

g s

[class« class superclass. "follow the superclass chain if necess"”
class=nil>[user notify: 'Unrecognized message: "+message]]

[meth primitive= "If flagged as primitive, then do it"
[self doprimitive: meth[Tself]]]. "If it fails, proceed with send"
callee~ Context new “create new Context, and fill its fields"

sender: self method: meth pc: meth startpc
tempframe: (t+ Vector new: meth tframesize) stackptr: meth startstack
mclass: class receiver: self pop.

forf i to: meth nargs do8 "pass arguments”
[t i« self pop]
fecallee] "return new Context, so it becomes current”
nextbyte “step pc and return next code syllable"

[ftmethod " (pc+ pc+1)]

Stack-related Messages
push: val "push value onto top of stack"

[tempframe " (stackptr+ stackptr+1) « val]

top “return value on top of stack"”

[ttempframe stackptr]

pop |t "pop value of f stack and return it"

[te tempframe stackptr,
stackptr+ stackptr-1. Tt]

