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Abstract 

The tantalieing potential of eo-called visual and iconic 
programming remains largely unfulfilled because of 
several unresolved issues. After briefly enumerating 
the open problems, we review the BLOX methodology 
which we recently introduced in an effort to overcome 
some of them. BLOX has been presented in the lit- 
erature to date in terms of multiple planar diagrams, 
which impart to the methodology what may be termed 
a 2.5-dimensional appearance. In the main part of this 
paper, we show that this is actually but a special, re- 
stricted case of the generd methodology, which nat- 
urally encompaesee three dimensions and more. We 
then argue that it ia often unnatural for programmers 
to compose programs, to view data structurea, and to 
perform other computer-related activities, in less than 
3-D. 

tThia work was supported, in part, by the Xerox Corporation. 

1 Introduction (Or: From a 1-D 
Past to a 2.5-D Present) 

Over a century ago, the Shakespearean scholar and ama- 
teur mathematician Edwin Abbott explored a hypothet- 
ical two-dimensional world he called Flatland [ 11, whose 
inhabitants were totally unaware of the existence of a 
three-dimensional Space and the startlingly novel views 
of the universe that it could provide. 

In our view, for technical reasons programming has 
up to now been similarly artificially confined to just a 
small part of the programming environment Space. 

In the beginning, all programs were one-dimensional 
(linear) text strings. For many years, these text strings 
were broken into segments and inscribed on punched 
cards. Eventually, the medium of expression became 
glowing phosphor on the glass face of a CRT. 

In 1975, David Canfield Smith’s dissertation [2] 
heralded a new era in programming, in which the in- 
creased power of computing engines, and their graph- 
ics capabilities, made it possible to try to utilize the 
two-dimensional CRT screen as more than a mere back- 
drop for the wrap-around of a linear text string. Two 
new styles of programming resulted. In visual enuiron- 
merits, multiple windows and graphical elements play 

292 
CH2468-7/87/0000/0292$01 .OO 0 1987 IEEE 

http://crossmark.crossref.org/dialog/?doi=10.5555%2F42040.42095&domain=pdf&date_stamp=1987-12-01


prominent roles alongside text (cf. [3,4,5], and commer- 
cial products such as the Apple Macintosh human-OS 
interface and spreadhseet programs). In iconic enoi- 
ronments, users compose programs by juxtaposing small 
images, commonly termed icons; in such environments, 
it is therefore possible to employ well-known “classical” 
graphical aids to programming such as flowcharts, Nassi- 
Shneiderman structure diagrams and augmented transi- 
tion networks, as direct means of human-computer com- 
munication (cf. [6,7,8]). 

The past decade has witnessed the accumulation 
of an impressive body of evidence, that visual and 
iconic environments may prove highly beneficial, both to 
computer-users in general and to programmers in partic- 
ular. This is because the computer’s ability to represent 
in a visible manner normally abstract and ephemeral as- 
pects of the computing process such as recursion, concur- 
rency and the evolution of data structures through time, 
can have a remarkable and positive impact on both the 
productivity of programmers and their degree of satis- 
faction with the working environment. Thus, it was not 
unusual for users of the author’s PICT system [6], for 
instance, to make comments such as “[PICT] would be 
great for . . . home computers, [as] people wouldn’t need 
to learn a computer language.” Comments such as this 
are significant not because they are true, for they aren’t; 
PICT users did learn a programming language, as well 
as a simple editor! The important point is that these re- 
marks are indicative of the users’ positive frame of mind 
after coming into contact with the PICT system for the 
first time. 

The successes of the visual and iconic approaches 
notwithstanding, the open problems are still numerous 
and substantial: 

l What might constitute an appropriate hard science 
foundation for the field? Among other things, we 
sorely need: 

1. Formal models that might lead to counterin- 
tuitive results being proven. 

2. Good notations, analogous to the Backus- 
Naur Form [9] for textual languages, for pre- 
cisely specifying human-computer interfaces 
and the visual languages that generate them. 

l Can visual programming scale up, so that it will be 
useful for more than the “toy” programs typically 
written by novices? 

s Can we find, for programs and even more so for 
data structures, suitable and uniform representa- 
tions of a mixed textual-graphical nature? 

l What constitutes a good “graphical vocabulary?” 

l Can we define and validate useful metrics for visual 
and iconic programming? There are two facets to 
this problem: 

1. Metrics for assessing the relative merits of al- 
ternative environments. 

2. Metrics for comparing programs composed in 
any given, single environment. 

The solutions to many of the problems just enumer- 
ated will most likely turn out to be mutually depen- 
dent upon one another. In a series of recent papers 
[10,11,12,13,14] we have introduced a new, paradigm- 
independent methodology of a mixed textual-graphical 
nature, which we call BLOX, and provided evidence in 
support of OUT contention that an integrated approach 
based upon this methodology may be one way to attain 
some of the solutions we seek (cf. 115,161 for another ap- 
preach) . 

After reviewing the BLOX methodology in the next 
section, we will propose in section 3 a more radical ap- 
proach to resolving these same issues. As BLOX has been 
presented in the literature up to now, and as it has been 
used in the design of several environments, the method- 
ology gives the impression of being essentially planar. In 
this paper we will show that this is an illusion, and we 
will in fact extend the methodology to three dimensions. 

We will then argue that it is often unnatural to com- 
pose programs, to view data structures, and to perform 
other computer-related activities, in less than 3-D. Con- 
sequently, the question arises: Has the time not come for 
programmers to flee their Flatland prison for the freedom 
of Space? 

2 Review of the BLOX Method- 
ology in 2.5-D 

The classical graphical representations for programs that 
we referred to in passing in the introduction were all orig- 
inally developed for use with paper and pencil. As a re- 
sult, they are two-dimensional and static. The diagrams 
in question often need to be drawn by hand, a tedious 
chore for those of us who are not expert draftsmen. Be- 
cause the graphical representation is distinct from the 
actual program associated with it, there is often little 
more than a superficial resemblance between the two af- 
ter debugging is completed. 

A suitable interactive human-machine interface can 
overcome some of these problems, by mechanizing di- 
agram generation and by unifying the graphical repre- 
sentation of a program with the program itself. Nev- 
ertheless, it remains difficult to effectively handle large, 
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complex programs. One tends either to end up with some 
form or other of the proverbial spaghetti ball, or to find it 
necessary to mumble “encapsulate!” and resort to hand- 
waving. 

Some investigators believe that the two-dimensional 
nature common to the classical graphical representations 
is part of the problem. Thus, they have advocated the 
use of multiple, interconnected planar diagrams, in what 
we call a 2.5-dimensional approach [17,18,19]. 

BLOX representations take all of these ideas one step 
further. In particular, they have been designed from their 
inception for display by a computer on a VDU, with far- 
reaching consequences. 

Programming environments based on the BLOX 
methodology are termed BLOX worlds. The elements of 
these worlds present an external facade patterned after 
familiar children’s toys. For the purposes of this section, 
and in conformity with the manner in which the method- 
ology has been presented in the literature up to now, the 
elements are tiles analogous to the pieces of which jigsaw 
puzzles are composed. However, BLOX tiles are at once 
real and imaginary, for unlike their counterparts in the 
physical world they can hide “miniature” or lower level 
substructures which they encapsulate (note that this im- 
plies a 2.5-D approach). BLOX tiles are also dynamic 
rather than static, in that their visible features (e.g., 
size, color, and edge contour or shape) may all change 

under appropriate circumstances - say, when elements 
are repositioned on the screen (location/context induced 
change), or as sundry events transpire (temporally in- 
duced change). 

Users compose BLOX programs by building struc- 
tures which consist of one or more joined tiles, accord- 
ing to the usual jigsaw-puzzle lock and key metaphor 
in which protrusions are plugged into correspondingly 
shaped indentations so that the two juxtaposed tiles in- 
terlock. Depending upon the applications domain, the 
designer of a BLOX world can, if appropriate, impose 
additional constraints on which tiles or blocks may be 
joined. For example, the colors on the interlocking edges 
or, more generally, the images on the tiles might have to 
be compatible in some sense. 

To elucidate some of the aforementioned concepts, 
we briefly discuss two examples. In each case, just a few 
salient features will be described. 

Consider first a Proc-BLOX world for programming 
according to the imperative procedural paradigm. In this 
environment we would have available tiles which corre- 
spond to constructs such as the clause or BLOCK (a se- 
quence of one or more statements, often enclosed, in tex- 
tual environments, between reserved words akin to the 
Pascal BEGIN and END), and the IF and WHILE condi- 
tionals. However, we would most likely not wish to apply 
the BLOX mechanism to details at too low a level (e.g., 

Figure 1: Possible Realizations of Some Imperative Pro- 
cedural Constructs Using Tiles. 

individual characters in identifiers, or the symbols that 
denote the various arithmetic operations). Thus expres- 
sions, say, in assignment statements would be typed in 
via the conventional keyboard and parsed incrementally 
(by an interpreter) to assure syntactic correctness. 

Fig. 1 illustrates how the aforementioned tiles might 
look. The actual configurations of knobs and sockets 
assigned to the various tiles in the Figure are clearly ar- 
bitrary and, as a consequence, immaterial. Note how 

begin 
Sl; 
if not I1 then 

begin 
s2; s3; 

end 
else 

while Ll do 
begin 

if 12 then S4 else S5; S6; 
end; 

while L2 do S7; 
S8; 

end. 

Figure 2: Schematic Fragment of a Pascal Program. 

the lock and key metaphor incorporated in the design 
of the tiles is used to effectively enforce proper syntax. 
Note, also, how the shapes of the various instances of the 
BLOCK tile have been dynamically tailored by the en- 
vironment to the context in which they are being used. 
We remark that, in an actual program, the code seg- 
ments corresponding to the alternative branches, loop 
bodies and Boolean expressions associated with the IF 
and WHILE statements could be individually encapsu- 
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lated in the appropriate tiles, thereby fostering top-down 
program design. To see how this might work, consider 
the Pascal program fragment in Fig. 2; Fig. 3 shows the 
corresponding Proc-BLOX representation. Note that in 
Fig. 3, the subuniverses contained in some of the tiles 
have been exploded and encircled for the reader’s ben- 
efit, although they would not normally all be visible at 
one time to the Proc-BLOX user. 

Let us turn now to an entirely different domain, 
namely that of VLSI and ULSI design. This is a complex 
task that commands attention at a multitude of differ- 
ent conceptual levels, including that of complete proces- 
sors, processor modules as logical units, various gates for 
the specification of individual logic circuits, and transis- 
tors of diverse types, not to mention power sources, sig- 
nals and wires of multiple types. A VLSI-BLOX world 
would therefore need to provide access to several families 
of tiles, along with appropriate tools for working with 
them. The tiles which denote wires would be particu- 
larly interesting, as their shapes would undoubtedly be 
of a piecewise rubber band nature so that they could 
stretch and turn corners at will, thereby allowing a wire 
to link arbitrarily positioned components. These tiles 
would also probably possess variable translucency, so as 
to allow sharp differentiation between insulated crossings 
and junctions. Alternative and sometimes incompatible 
technologies associated with the physical realizations of 
certain electronic units could be easily accommodated, 

Figure 3: Tile Representation of the Program Fragment 
Shown in Fig. 2. 

through augmentation of the lock and key metaphor, if 
necessary, with appropriate background colors. 

Fig. 4 shows two simple circuits constructed from 
tiles associated with the gate level of our hypothetical 
VLSI-BLOX world. We are quick to stress that this 
Figure is intended to convey to the reader an under- 
lying concept, rather than to depict a design that one 
might realistically generate on the screen using the envi- 
ronment at hand. Thus, their appearance in the Figure 
notwithstanding, the edges of the tiles could be made in- 
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(b) 

Figure 4: Possible VLSI-BLOX Realization of Two Sim- 
ple Combinational Circuits: (e) Half Adder; (b) Full 
Adder. 

visible after insertion into a circuit, so as not to clutter 
up the image with unnecessary and potentially confus- 
ing details. Furthermore, the simple gate level diagrams 
shown notwithstanding, we are of course aware that floor- 
plans at the higher functional levels, on the one hand, and 
standard cell or metal layout, on the other hand, would 
in most instances be the true targets of a VLSI-BLOX 
world. 

As the examples make clear, the BLOX methodology 
is independent of the underlying programming paradigm, 
and it also supports embedding of the various classical 
graphical representations for programs. To see this, note 
that: 

Proc-BLOX adheres to the imperative procedural 
paradigm, whereas VLSI-BLOX may be viewed as 
either a constraint based environment or one that 
is functional with a graphical front end. 

Proc-BLOX is not flowchart based, because a pro- 
gram’s logical structure and flow of control are 
expressed in a uniform manner by a combina- 
tion of (1) joining tiles together in appropriate 
ways, and (2) encapsulation. Yet BLOX can sup- 
port flowchart representations, for one can easily 
imagine an analog to the VLSI-BLOX world in 



which gates and wires are replaced by conventional 
flowchart nodes and flow-of-control paths, respec- 
tively. 

Having mentioned color in passing several times, it 
behooves us to direct a few words specifically to the po- 
tential role of this attribute in a BLOX world. Although 
some might argue that color is not essential to the success 
of a human-computer interface, we fervently believe that 
its judicious use can prove highly beneficial. Of course, 
highlighting springs to mind as one possible application, 
but that’s not really the important issue. In complex en- 
vironments, it is crucial that a hierarchy or vocabulary of 
graphical clues (201 be provided to facilitate user selection 
of pairs of tiles that may be joined. A simple hierarchy 
of this type, in which color supplements the information 
imparted by shape, might include (in descending order): 
(a) background color or image; (b) edge color or pat- 
tern; and (c) edge contour. This latter attribute could 
be used to designate subfamilies of compatible elements 
through use of a master key concept. The arc length of 
appropriate edges would first be subdivided (by the sys- 
tem designer), after which one or more segments of the 
contour would be varied while maintaining the remainder 
identical for all members of the family. 

The preceding discussion has centered on two hy- 
pothetical examples. Detailed descriptions of the (com- 
pleted) PC-TILES environment for imperative procedu- 

ral programming in the small, and of the BLOX-based 
multiparadigm human-computer interface to OOCADE, 
an integrated system-level design environment for com- 
plex circuits (implementation in progress), may be found 
elsewhere (21,221. 

To complement practical applications for BLOX 
such as these, we have recently proposed the class- 
instarzce pair, or CLIP, model for visual programming 
environments [23,24]. We have shown that BLOX pro- 
vides a natural embodiment for the CLIP model, which is 
equally well suited to sequential, parallel and distributed 
environments. Furthermore, CLIP can support all three 
major categories of interfaces for programming environ- 
ments: (a) the traditional textual; (6) the mixed textual- 
graphical, as employed in classical graphical representa- 
tions for programs such as those referred to previously; 
and (c) the highly graphical, as exemplified by systems 
such as Borning’s remarkable ThingLab [25]. The proof 
for the textual case (a) is based on Knuth’s well known 
“boxes and glue” model [26, chapters 11-121. 

3 Into the Future: From 2.5-D 
to 3-D and More 

The last paragraph of the preceding section implies, that 
a textual 1-D BLOX methodology can be obtained as a 
degenerate version of the 2.5-D case we have described. 
In this section we will show the converse: BLOX is unique 
in comparison to the classical graphical representations 
for programs, in that the 2.5-D version is but a spe- 
cial, restricted instance of the general case, which nat- 
urally encompasses three dimensions and more. (About 
a decade ago, the English researcher R. W. Witty at- 
tempted to extend the concept of a flowchart to three 
dimensions via his so-called “dimensional flowcharting” 
(2’71. However, his ideas were unfortunately ahead of 
the technology of the time.) The discussion in this sec- 
tion will also clarify our reasons for naming our BLOX 
methodology with an acronym derived as a synthesis of 
the word blocks with a contraction of BLack boxes. 

But first, why do we advocate programming in three 
dimensions? Many readers will surely argue (and rightly 
so, as we pointed out in the introduction), that we don’t 
yet know how to properly utilize two dimensions! 

We do not propose eschewing 2-D visual and iconic 
programming for 3-D. We do propose broadening our 
horizons to include the third dimension when appropri- 

ate, for several reasons. For one thing, the technology 
is now available in (top of the line) workstations, and it 
will rapidly become affordable to all. More importantly, 
however, are the precedents set by analogy with other 
branches of science. 

There are numerous examples in mathematics, for 
instance, where extending the domain of discussion al- 
lows one to solve seemingly intractable problems relating 
to the original, restricted domain. Two familiar examples 
of this are the introduction of fractions to allow division 
of integers without remainder, and the fact that as a rule 
the roots of a quadratic polynomial P(z) = ax’ + bx -i- c 
with real coefficients lie in the complex plane. 

Furthermore, we repeatedly find cases throughout 
the natural sciences where it is either actually provable, 
or generally accepted on the basis of empirical evidence, 
that 3-D is significantly different from 2-D. The follow- 
ing short list of examples should serve to illustrate the 
pervasiveness and variety of this phenomenon. 

1. In mathematics: 

l The number of regular polygons, which is fi- 
nite (and indeed small) in all Euclidean spaces 
save that which is 2-D, where it is infinite [28]. 

l Various phenomena related to random walks, 
including the probability that the origin will 
ever be revisited 1291. 
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l A host of combinatorics problems such as 3- 
DIMENSIONAL MATCHING and I-SATIS- 
FIABILITY, which are known to be NP- 
complete, vs. Z-DIMENSIONAL MATCH- 
ING and 2-SATISFIABILITY, which are 
solvable in polynomial time [30]. 

l Numerous results in topology, including Bor- 
suk’s Theorem, which implies that in Eu- 
clidean spaces of odd dimension every continu- 
ous mapping of the surface of the unit sphere 
onto itself (or the negative mapping) has a 
fixed point, whereas in 2-D a simple rotation 
about the origin generally does not 1311. 

2. In physics: 

l Phenomena associated with fluid flow and tur- 
bulence, which are often stable in 2-D but un- 
stable in 3-D, or vice versa 1321. 

3. In thermodynamics: 

l The so-called Ising model [33] for describing 
molecular state transitions has several analyt- 
ical solutions in the 2-D case, but none are 
known for 3-D. Moreover, the 2-D solutions 
imply properties of materials which are often 
not experimentally confirmed, whereas it is 
expected that 3-D solutions may better cor- 
respond to the real world. 

Might not a similar situation hold for programming, too? 
And, if it does, ought we not to exploit it to our advan- 
tage? 

Consider, for example, a tree each of whose elements 
is a complex record. In a 3-D space the record fields can 
be turned at an angle of 90’ to the interelement links. 
Proper choice of vantage point then allows us to view 
either the overall structure or the contents of certain ele- 
ments, as illustrated in Figs. 5(a) and 5(b), respectively. 
Clearly, for data structures such as this it would be very 
useful to have a true 3-D display that could be rapidly 
and continuously rotated in any direction at the user’s 
command. 

Because the majority of existent programming lan- 
guages were designed with 2-D considerations in mind, 
this domain does not readily provide examples as satis- 
fying as those relating to data structures. (We intention- 
ally say 2-D here rather than l-D, despite the purely 
textual nature of most languages, because for more than 
two decades the choice of constructs provided has usu- 
ally been determined, at least in part, by the tenets of 
so-called “structured programming” - a concept which 
to many refers essentially to the avoidance of spaghetti 
balls in flowcharts.) 

Nevertheless, it is clear that some of the emerg- 
ing languages, such as the DOD’S Ada-based VHDL [34] 
for designing electronic circuits, are already problematic. 

(4 

(b) 

Figure 5: Two-Dimensional Projections of a Tree Struc- 
ture: (a) In the X - Y Plane, Showing the Interelement 
Links; (6) In the X- 2 Plane, Showing the Fields Com- 
prising an Element. 

Why? VHDL provides concurrent as well as sequential 
statements, in an attempt to deal with parallelism in 
complex entities such as CPUs and arrays of memory 
cells. Upon a first encounter with the language it is im- 
mediately obvious that text (1-D) is insufficient to the 
task at hand; schematic (graphical) capture of designs is 
imperative in this context (351. But 2-D or even 2.5-D 
will at best provide a temporary solution, because the 
languages of the near future will surely need to address 
ever more exotic domains: distributed computing, say, or 
3-D chip design. As Reiss has recently reiterated [16], in 
the next generation of programming environments pro- 
grammers should be able to build programs by putting 
together collections of objects to yield an executable pro- 
totype, so that designers can experiment directly with a 
design as they work on it. 

Even the sequential statements in VHDL are uncon- 
ventional (and, in some cases, controversial [36]) when 
compared, say, to those of Pascal. The WHILE, for ex- 
ample, is augmented with both NEXT and EXIT capa- 
bilities which violate traditional views of structured pro- 
gramming. 

The conclusion is inescapable. It is time for com- 
puter science to begin exploring revolutionary rather 
than evolutionary means of programming, in the hope 
that the tools will be ready when required. 

How, then, can we extend BLOX to 3-D? Actually, 
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as it turns out this can be done quite naturally; indeed, 
it is almost child’s play. In the simple, 2.5-D form which 
we described in the previous section, BLOX elements 
were tiles analogous to the pieces of which jigsaw puzzles 
are composed. In 3-D, these elements would instead be 
opaque blocks much like those found in LEGO* or Bris- 
tle Blocks.* As before, users would compose programs 
by building structures consisting of one or more elements 
joined according to the lock and key metaphor, in which 
knobs are plugged into correspondingly shaped sockets. 
Again, depending upon the applications domain, the de- 
signer of a BLOX world could, if appropriate, impose 
additional constraints on which blocks may be joined; 
for example, the colors or, more generally, the images on 
the touching faces might have to be compatible in some 
sense. 

We noted earlier that, unlike their counterparts 
in the physical world, BLOX elements can encapsulate 
lower level substructures. In 2-D this analogy is slightly 
strained. In 3-D, however, it is completely natural, since 
we live in a three-dimensional universe; indeed, it is anal- 
ogous to what toddler’s toys such as the Child Guidance 
Kitty-In-The-Kegs do. 

Is our approach to defining the syntax of elements in 
3-D BLOX worlds respectable, based as it is on children’s 
toys? We claim that the answer is a resounding “yes!” 
To cite but a single precedent from another realm of sci- 
entific endeavor, Linus Pauling’s renowned ball-and-stick 
models for complex molecules are an obvious extension of 
the Child Guidance Tinkertoy.’ Note that the specifica- 
tion and elucidation of molecular structure is yet another 
domain where a 3-D perspective (i.e., the ball-and-stick 
model) has turned out to be a valuable supplement to 
traditional 1-D and 2-D methods (in this case, textual 
formulas and symbolic planar diagrams, respectively). 

Let us close this section by speculating on some of 
the unorthodox things the elements of 3-D BLOX worlds 
might do (these may or may not eventually prove to have 
some “use”). The semantic routine associated with a 
block might in part depend upon geometric or spatial 
information such as the color(s) of one or more of the 
block’s faces, the orientation of the block in space, or 
the immediate neighbors to which it is joined and their 
relative positions. In addition, as we have pointed out 
elsewhere [23], a block’s semantic routine could trip trig- 
gers associated with other block(s) in a variety of ways 
(triggering can be thought of, in its simplest form, as 
activation in some sense); the blocks so affected might 
be immediate neighbors (local), or located at a distance 

*LEG0 is a trademark of Interlego, A.G. 
5Bristle Blocks is a trademark of Playskool, Inc., a Hasbro 

Bradley company. 

‘Child Guidance, Kitty-In-The-Kegs and Tinkertoy are 
aII trademarks of CBS Toys, a division of CBS, Inc. 

(global). Unusual actions which might be incorporated 
into a BLOX world could include: cause motion (e.g., ro- 
tate part or all of a structure); change the configuration 
of knobs and sockets, or the image(s), on one or more 
faces of some block(s); cause the “spontaneous genera- 
tion” of new blocks and structures, or the replication or 
deletion of (groups of) blocks. 

4 Summary 

Expansion of the programmer’s work space to three di- 
mensions may make it possible to design new (visual) lan- 
guages and programming environments, which will differ 
radically from those in use today and be free of certain 
drawbacks that plague us at present. 

The use of three dimensions for programming cannot 
be considered an automatic panacea. There are potential 
pitfalls to be avoided. In the BLOX methodology, for in- 
stance, the set of constructs comprising some future pro- 
gramming language might inadvertently be designed so 
as to allow one block to become completely surrounded 
by others under certain circumstances. This could make 
it difficult for users to access parts of their programs with 
an editor, or to watch execution at run time. (A possible 
solution to this particular problem could be to make the 
blocks translucent to a degree.) Nevertheless, we believe 

that our BLOX methodology, which is naturally exten- 
sible from 1-D to 2.5-D, and then in turn to 3-D and 
more, may prove a useful tool in the design and imple- 
mentation of these brave new worlds. 
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