
ST PAGE 1

Necessary Information about this paper.
Latest revision: June 6, 1973

(The permanent names of this file are
SMALLTALK.DC. ***
SMALLTALK 1.DC.
SMALLTALK2.DC.

Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look under the structure to discover what file to load.

This file should be displayed using font SROMAN.FD.
To print, edit with SMDELEG. FD and Write Translated,
then print on XGP using font SMDELEG.XG)

ST PAGE 2

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. Kay

Learning Research Group
Xerox Palo Alto Research Center

Abstract

SMALLTALK is a language which allows children (and adults) to build
semantic models of their ideas in simple uncomplicated ways, and,
dynamically simulate them with respect to arbitrary environments.

Simplicity is achi eved by having
a. only one kind of object in the language (a process) which can
act like all other known computer objects,
b. a single uniform scheme for interobject communication, and,
c. an intensional semantics in which the meaning of an object is
a part of the class to which an object belongs rather than
dispersed through the system as part of more conventional
extensional operations.

Benefits are the abilities to create new "functional", "data",
t'control", etc., entities without the usual problems associated With
updating and coercion of generic functions.

*******ff

Acknowledgements

The main influences on the content of this paper were the coprocess
and data/function equivalences of FLEXIka-68,690, Flex's influence
SIMULA IDahl, et.al.,4 LISP IMcC, et.al.<5, a number of control ideas
of Dave Fisher>fi-760, goals as expressions found in Carl Hewitt's
PLANNER}he-760, and the simplicity and ease of use of
LOGO i pa, et.al-67,...73¢.

Dan Ingalls of LRG in PARC, the implementer of SMALLTALK, has
revealed many design flaws through his several excellent quick
"throw away" implementations of the language. SMALLTALK could not
have existed without his help and good cheer.

Introduction

SMALLTALK is built from a few simple, yet powerful, ideas.

First, SMALLTALK considers every OBJECT in its world to be an
independant entity with local state and control. All distinction
between "datalike" and "procedurelike" objects, such as exist in
other programming languages, is thus removed. This includes ttdata",
such as numbers, strings, arrays, lists, structures, etc.;
"functions", such as 'factorial', 'plus', 'print', etc.; "control
structures", such as conditional branches, repeats, recursion, and
so on; "IO devices", such as 'files', 'the user', 'display and
keyboard', etc.; all are treated alike because they ARE alike.

Next, all objects are composed of PARTS, even if they only contain
themselves. The object can be thought of as a dynamic dictionary
which contains all the relations and rules in which it can take
part.

n A »r 7 4

Third, objects can send and receive MESSAGEs to/from other objects.
This may cause new objects to be created, altered, or even
destroyed.

(Since there are no "special" objects, there is only one message
protocol.)

Finally, each object is considered to be a member (or INSTANCE) of a
CLASS, which is another object that contains the rules of behavior
shared by all the members. Since each class has a class defining
object, they are members of the class of class-defining-objects, as
one might expect.

Messages

A message is a stream of zero or more symbols.
If the stream starts with an open parenthests, its closing
parenthests absolutely terminates the stream.

An embedded "." at the same level will terminate the current
message and will cause the message following it to be sent.

If the message is composed of partshose termination is
ambiguous, a '4 " can be used to clarify matters.

Sending is done from left to
is passed immediately to the
along with information about
the EVALuator does. The
way it chooses.

A common first objec
a LISP atom, all of
composed of letters,
characters).

right using a very simple rule: control
first object encountered in the streams
the context of the send. This is all

may gather in the message in any

with

receiver

t is an instance of the class "name" (as
its members start with a letter and are
digits , underscores, and other special

The action of a name is to look
environment/dictionary to see if
another object). If it does, tha
it to the remainder of the messa
message is consumed.

A venerable example: factorial.

A message
factorial 3.

is sent in the following manner.

itself up in the current
it has a meaning (which is

t object is RETURNed by APPLYing
ge; --- And so it goes until the

Control is passed to the name "factorial" which looks itself
up in the current environment and finds another object as its
value. The new object is a class defining object which
contains the rules for all the instances of the class
"factorial":

:n. t if n = 6 then 1 else (n * factorial n - 11.

The action of the class defining object is to create a new
instance of factorial and APPLY it to the message.

The ft:" is a "receive" (or
EVALuate the input stream
11 3 ") and then to make a new
to define the name {in this
"n" will have the value . 3"

"input") object whose action is to
this case "3", whose value is

entry into the local environment
case un"). After this a lookup of

(in

t

ST PAGE 2.2

The 'tt" is a "send" Cor 'toutput") object which will APPLY the
EVALuation of its argument to the remainder of the message
found in the CALLER's object.

The next message is sent by finding "if" which tries to
receive the message consisting of the EVALuation of "n•6".

Control is passed to "n".
It looks itself up and finds "3".

Control is passed to it.
11 3 " is an instance of the class number which has many
relations it can respond to.
"3" receives the next object (unevaluated) to see
what it is. (It could be any of +, -, */,<,>,
etc.; in this case it is "=").
"3" wants now to evaluate the next part of the
message in order to see whether to RETURN "true" or
"false".

Control is passed to '10" which, as with "3", is an
instance of class number, and thus shares the same
relations.
50, it looks to its right to see if anything like
+, -, *, etc,, is there which it can respond to.
It finds only "then" for which it has no meaning.

So it RETURNs ITSELF to 1,3" which now has enough info
to decide "not true"

which is RETURNed to "i f " whic:h decides not to evaluate the
message following "then", but does try to evaluate the
message following "else".

:tn" looks itself up, finds the value '13"
which picks up the name "*" for which it has a
meaning.
So "3" tries to evaluate the next part of its message
"factorial n - 11".

Control is passed to •factorial" which looks
itself up and discovers (as before) a
class-defining object with the rule:

in. tifn=-0 then 1 else (n * factorial n- 1).

As before, a NEW instance is created which will
try to evaluate the message "n - 11 " to get a new
value for ":n""n" in the 6LD environment looks itself up and

discovers "3"
which looks to its right and finds te," so it

tries to evaluate the next object "1'
which which looks to its right and finds
") " (which terminates any message to "1")
so it RETURNs ITSELF to "3"

which knows how to subtract "1"
which causes a new instance of class number
to be produced for the result "2"

which is RETURNed to the ":" in the CURRENT
instance of "factorial"
which will enter it as a value for un" in the
CURRENT environment.
And so it goes.

The preceding rather long winded explanation of a Well known
example illustrates a number of important points.

First, although the terminology seems to be more general than
is needed, a simple program in SMALLTALK looks simple and can
be discussed in simple terms.

Second, only one rule of correspondence is needed to link
form and content. The evaluator ONLY needs to know how to pass

£ 8.-1. -6 * .,

control and context to an object. All other meanings are found
distribu:ted with the objects in the sys'tem. As shown, even
such a seemingly primary act as creating a new instance is
done by an object and thus can be changed at the user's whim.

Third, there are many cases where this generality of approach
pays off handsomely. If we want to trace the activities of a
name (such as "n" in instance 1) we need only create an object
which can replace "3" as a meaning (so control will be passed
to IT when "n" is touched), AND has a local entry of its own
for "3" so that the meaning of "n" will not change with
respect to its input/output characteristics. This means that
an object can simulate any other object.

Fourth, all "relations" and "operators" (such as <, >, +, *,
-, etc.) can be defined "intensionally" Cor "intrinsically")
as parts of an object or object class, rather than
"extensionally" (or "extrinsically"), as is usually the case,
as global functions.

In fact, "factorial" could have been defined this way as an
intensional relation of a number. We might then have said
1131 " and the class number woul d know what to do.

This means that the information pertaining to a class and
what its members do need only be stored with the class. No
global operations need to be updated. So, a class may be
deleted without changing the rest of the world.

Also, this is a very convenient way to handle problems that
arise from having multiple classes with operations: such as
coercions between classes and the various senses of t'fetch"
and "store" ('4-) .

For instance, the message "a +3+1" means:
pass control to "a" which will look itself up and

pass control to the object it finds
which can gather the rest of the message as it
pleases.
It can look to see if the next name is a %",
if so, it can EVALuate "3 + 1" and decide how
to store it.

So "b 1 + 81" , if ttb" were an instance of an array,
could mean

'store 81 in the ist position'; or
if "b" were an instance of a hash table routine, could
mean

'associate the hash of ul" with tt81" in some way',
etc.

The problem of coercions will be discused a bit further on.
Fifth, instances may be EVALuated "concurrently" using the
very same EVALuation strategy. Here, the generality of message
send/receive becomes much more important.

ST PAGE 3

Class Definitions Already in SMALLTALK

<See SMALLTALKl.DC for this branch>

Some SMALLTALK Programs
<See SMALLTALK2.DC for this branch>

ST1 PAGE 1

Necessary Information about this paper.
Latest revision: June 6, 1973

(The permanent names of this file are
SMALLTALK.DC.
SMALLTALK 1.DC. ***
SMALLTALK2.DC.

Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look under the structure to discover what file to load.

This file should be displayed using font SROMAN. FD.
To print, edit with SMDELEG.FD and Write Translated,
then print on XGP using font SMDELEG.XG)

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. Kay

Learning Research Group
Xerox Palo Alto Research Center

Abstract

<See File SMALLTALK.DC for this branch>

Acknowledgements

<See File SMALLTALK.DC for this branch>

Introduction

<See File SMALLTALK.DC for this branch>

Messages

<See File SMALLTALK.DC for this branch>

011

Class Definitions Already in SMALLTALK

SMALLTALK is supplied with many useful classes, including quite a
few found in one way or another in other programming languages.

These definitions are written in SMALLTALK as though they were
not primitive objects. In some cases (such as the definition of
"if") a primitive must be used to describe itself---which causes
some obscurity.

Input and Output Objects

Informally (i.e.---more readable)

Input a Value

followed by a name will evaluate the input stream to
produce a new object which will be bound to the name.

This is exactly the same as LOGO.

Example; :value
will bind the result of evaluating the input stream to

"value"

Input a Token
followed by a <name> will not evaluate the input stream

but will bind the next object there to the <name>.

There is no equivalent for this in LISP or LOGO, it acts
as though the next input object were quoted.

Example; ovalue
will bind the next input object to "value"

Check Input for a Token

followed by a <name> will check the input stream to see if
an identical <name> is there. No evaluation will take
place. The Input Stream Pointer (or Program Counter) will
NOT be advanced if the match falls. If the match succeeds,
the ISP will be advanced to the next position.

This is used frequently to check for "operator" tokens
such as +, *, and +-.

Example; p+ will check the input stream for a
"+" and will return TRUE if successful

Input Literal Stream

followed by a <name> will bind a reference to the Input
Stream at the current point.

This is equivalent to PEXPR in LISP 1.5 or NLAMBDA in
BBN-LISP.

Example; :value will bind "value" to the input
stream. EVALuation of this fragment may be delayed
until later.

<Other Input Objects>

t t

ST1 PAGE 2.1

will be mentioned here in a later version of this memo. An
object to EVALuate a sequence of the input stream (like
EVLIST in LISP) will probably be included at the very
least.

! APPLY-RETURN a value.

This output object is used when when a subroutine control
structure and message passing discipline is desired. Its
single argument is EVALuated in the CURRENT environment and
then APPLYed to the program stream of the CALLER process
to which CONTROL also ls RETURNed.
When used in "left: nested" argument gathering (for example
x.first.last or (A + B) + C), APPLY-RETURN will continue
the evaluation process.

t PASSIVE-RETURN a value.
The single argument is evaluated in the CURRENT environment
and RETURNed to the CALLER along with CONTROL.
PASSIVE-RETURN is similar to OUTPUT in LOGO or RETURN in
LISP.

GENERAL-RETURN a value.
9 Value process

is the form.
A value caller.

is the same as PASSIVE-RETURN.
8 (apply value message) caller.

is the same as ACTIVE-RETURN.

<Other Output Objects>

will be explained soon.

Defining a Class (Function)

There are many ways to define a class depending on how much
the user wants to know about the language and how much control
he desires to have over the format of the INSTANCE of a

definition. For now we will only be concerned with semantic
notions (which also require the least amount of explanation to
all concerned}.

LOGO/SIMULA/FLEX Fashion

"To" will define classes of roughly the power of SIMULA or
FLEX which include such things as function, process, and
structure definitions in other languages.

To To .name .body oind.
"As shown, "To" takes the first object in the message
stream unEVALuated to be the name of th
rest of the input stream is a structure
be the code body of the class. A member
is INSTANTIATED and bound to the name.
later passed to.the name a new instance
be created and (rl

e class. All of the
which is taken to
of the class CLASS

When control is
of the class will

End. C

ill , <196•

Examples;

7/7
297 U

9 44 4
W -4

... 29 49-
6 26

9/ 3-'b r
e '. 3
9 92

2 14

To factorial :n.
T if n.0 then 1 else (n*factorial n-1).

End.

This looks a lot like LOGO (intentionally) except tha
the input variable ":n" is not part of the heading (a
in LOGO), but is part of the "body". This reflects th
fact that input objects act like functions and thus ci
be used anywhere in a program. When a 'tfunction" is
instantiated, the first thing that is done in most
languages is to bind the arguments to a new set of
names. The very same effect is achieved in SMALLTALK
when the "evaluating input object", t,:" , is used
in the first set of expressions.

lit <i Conventional Class Definition
"To" as shown above, was included mainly for
with LOGO and LISP. SMALLTALK really treats "
like any other object. That is, any object is
class---so an object which creates a class is
class CLASS.
This means that a more general (and more conv
define factorial would be to say

.factorial « class. (If :n = 6 then 1 else
- 1).

or perhaps

.factorial - class.i :n.
If n=8 then 1 else

people familiar
class objects"
a member of a
a member of

entional) way to

(n * factorial n

En *
Efactorial n-1

using the <tab list> convention. One could even say

.var e .n.

.factorial + class
.(:) 4 var 4 .(• 6 then 1 else)
1(varl .(* factorial n - 1)).

where "1" means "append" pretty much in the LISP sense.

Total Control of the Instance
***for bit pickers, more on this later this summer.

Control (and State changing, etc.)

To If :exp.
!exp.
End.

t,1t Iff, is really just a dummy which computes a value to be
APPLYed to "then" or V'· This means that "TRUE"ness and
"FALSE"ness are properties of objects. This allows us to
consider all legal numbers as TRUE, if we wish. A class
with one instance EMPTY is provided to handle .FALSE"
cases.

(4 .

t f

TO .

PAGE 2.3

4,name ! n. * (:exp. t exp)
"lookup the name in current environment (if not
there, enter it as most global) and replace BINDING
with value of "exp" ".

1 name.
t'note that the value of the expression on the right "exp" is
RETURNed when a rebind is attempted, but when used as QUOTE,
it is the name which is RETURNed."
End.

To Eval :exp :globalenv :return :msg.
"There are many ways to EVALuate expressions in Smalltalk.
This one allows the user to set Hp an arbitrary environment
for f ree variable fetches, an <Ag*tary RETURN process, and j

an arbitrary MESSAGE environment."Eval" is included here
since it is very frequently used in definitions of new
control primitives".

End.

To Repeat .>Loopexp.
Code repeat.
Eval Loopexp Iglobal iself EMPTY.
Code again.
End.

"Repeat EVALs its loop expression in the context of its
caller."

To Again
"RETURNs control to the caller of its caller--i.e. to a
looping control primitive of some kind such as "Repeat"
which can decide what to do next".

End. t\» At
To Done

"RETURNs control to the caller of (the caller of its
caller) --to one level further out than a looping control
primitive. This automatically terminates the loop.
Eventually t,Done" will have an optional argument for
passing the RESULT of the loop back".

1 - 40.1
y-40* <
--·-T AS /49
6fj

End.

To Create
"Reschedule caller to be run instead of waiting for a
subroutine RETURN".

:call.
"This causes an evaluation of the argument. So it will also
be running".

End.
"As seen, "Create" causes a.naltalial fork in control.
Actually, tmis is what haliehs natiurally Iii
SMALLTALK---the default message discipline is
deliberately limited to a subroutine t,wait for reply"
protocol. "Create" simply prevents the caller from being
passivated".

To Word

.Explain»
t"Words are like LISP atoms or ALGOL identifiers. Their basic
operations have to do with assembly and disassembly of their
internal structures.

Words also have a special meaning in the context of
evaluation. An unquoted instance of a word will be looked

N---/mil

0 11

up (look itself up) when encount by the EVALuator. So
cat.first means "look up the met local binding of the
variable "cat" and APPLY it to +first". But .cat.first
means " call routine "." which RETURNs the word "cat"
which is APPLYed to .first, which, as seen below, wil
RETURN l'C" "

Numbers are words also, but have many additional operations
having to do with arithmetic and so are defined as a separate
class.".

p- w. :value.word -
tself.

11 "

.first

t"the first character of theprinvnalef the word".
Di f

T"same as "first"".

nlast „
t"...the last character of the printname of the word"

:t"...the same result as for "last". This is just an
abbreviation."

.butfirst „
t"Somehow return all but the first character of the string
representation of the word."

u b f
T"...same as butfirst."

.butlast c
t"Somehow return all but the last character of the string
representation of the word."

obl
t"...same as butlast."

ejoin 4 :valuel.word? 4
t"This is roughly equivalent to the 1,cons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returned."

0wjoin .:valuel.word? 4
tt,This is roughly
printname of the a
new word which is
.catdog."

nword? :

equivalent to concatenate in SNOBOL. The
two words are joined together to produce
returned. .cat wjoin .dog produces

Tvalue.

.empty? .t
tEMPTY.

./--h
length + ,

t"Somehow calculate the length (in characters) of the
number (including "-" and ". ,"7 "

\7----millil»

21
6. .f D

pprint p
1"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation will have a meaning for
.print. This is much simpler. than having to inform a global
print routine about the format of each new class."

0 474

ST1 PAGE 2.5

othen 4 :valuel us nelse s,- :,dum c t valuel
or . T Valuel.

'Having "then" in 'Word" in this way means that we are
adopting a convention that legal words 'n the context of a
tes- act as TRUE and thus cause the " en" expression to be
eva ated."
0/ b

To Number

1

.Explain-.
t"Numbers work in a very in'tuitive way. The READ program
recognizes number literals and creates instances for them in
storage.The bits that represent the particular instance of a
number are stored in the variable "value" and can be changed
by assignment as shown. This might be illegal if it is
decided that numbers are unique atoms. The opposite is
assumed here."

ne, m :value.number?.
1 self.-.

Ifdp'trt::/ is recognized in the input stream, what follows is
«evalliated and bound to "value" which is applied to number?

7 - which returns TRUE if it is. The actual value of the
number object itself has been changed so that other objects
which have pointers to "self" will feel the change. This
might be made illegal.

nfirst .
T"Somehow return the first character of the number which is
"-" if negative, is 't." if between 0 and 1, and a digit from 0
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

r,f
t"...the same resul't as for "first#. This is just an
abbreviation."

clast ,
t"Somehow return the last character of the number which is
"." if greater than 1 and known inexactly, and a digit from 0
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

n 1
t«...the same result as for "last". This is just an
abbreviation."

pbutfirst c
t"Somehow return all but the first character of the string
representation of the number."

o b f.o
T"...same as butfirst."

obutlast .t
t"Somehow return all but the last character of the string
representation of the number."

n bl -0
r'. .. same as butlast."

.join 4 :valuel.word? c
t"This is roughly equivalent to the "cons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returned."

.wjoin *:valuel.word? 4
1"This is roughly
printname of the a
new word which is
.catdog."

equivalent to concaterate in SNOBOL. The
two words are joined together to produce
returned. .cat wjoin .dog produces

.number? 2
rvalue.
"Anything not EMPTY will act as TRUE."

0Word?
tvalue

cempty? -
TEMPTY.

nlength o
t"Somehow calculate the length (in characters) of the
number (including "-" and t..1,)

nprint :
T"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation 'will have a meaning for
.print. This is much simpler than having to inform a global
print routine about the format of each new class."

nthen * :valuel * oelse # *dum w t valuel
or . t Valuel.

"Having 'tthen" in "Number" in this way means that we are
adopting a convention that legal numbers in the context of a
test, act as TRUE and thus cause the "then" expression to be
evaluated."

n= 4 :valuel.number? .t"value if value and valuel are numerically EQUAL, otherwise ,
EMPTY. Note that this allows "a•b=c" to work correctly."

•: :valuel.number? +
T"EMPTY if value and valuel are not numerically EQUAL,
otherwise value. Note that this allows "a•b,c'* to work
correctly."

„ :valuel.number? 4
t"value if value is numerically less than valuel, otherWise (
EMPTY. Note that this allows '4<b<c" to work correctly."

24921
244.43

: :value 1.number? .
t"value if value is numerically greater than valuel, otherwise 4 >A> 3
EMPTY.. Note that this allows "a>b>c" to work correctly."

+ :Valuel.number? 0
T 'tvalue added to val ue 1."

0- #:valuel.number? *
t"valuel subtracted from value."

.* u :number? -1
T"value multiplied by valuel."

4.4)4 w#z

PAGE 2.7

a / 1 :Value l .namber? *
t"value divided by valuel."

.mod * :valuel.number?
t"value modulo valuel."

o i p -+
t"...the integer part of value. S,

n fp 4
t"...the fractional part of value."

.exp :
t"...the exponent (to the base 16) of value."

„mag..
T if value < 6 then (0 - value) else value.

<other numeric functions which are stored as attributes>
sin, cos, other trig functions etc.

To List
,Explain
ofirst . .6- c :value.list 4

value.word? 4
u f . nx „ : value.list.,

value.word? .
.last 4 o# 4 :value.list :t

value.word? .
0 1 -* ex u :value.list +

value.word? .
nbutfirst 21 0- 5*1 :valite+list w

value.word? 4
o bf -< o- + :value.list =e

value.word? 4
obutlast * .4- w :value.list .

value.word? .
n bl „ 0 + c :value.list c

value.word? .
ojoin A
n!

asentence? 4
olist? +
.empty? e
olength ..
.print
.= * :value.list .
00 -0 :value +list .
n< -. : value.list c
r> -:·:value.list :*
n makeword .

To String
Position

Here are a set of useful operations for manipulating
two-dimensional space. The convention is adopted that "posx" and
"posy" will refer to position state, and "heading" will refer to
direction state. The programs are written so that the most local
occurance of these variables in the dynamic environment will be
updated. See the program "Spacevehicle" for a simple example.

To Forward :distance.
posx - posx + distance * heading.cos.
posy + posy + distance * heading.sin.

011 g al'W I. * Ial

End.

To Right :angle.
heading x (heading - angle) mod 360.

End.

To Left :angle.
heading + (heading + angle) mod 360.

End.

Output (to displays, music, turtles, etc.)

To Show :picture.
"This comprehensive routine allows the picture to be EVALed
and then copies the picture information into the display area
using either the dynamically available variables "posx"
posy", "heading", if its own bindings for these parameters are
EMPTY.

ST 1 PAGE 3

Some SMALLTALK Programs
<See SMALLTALK2.DC for Program Examples>

