S -

ST

 Necessary Information about this paper.

Latest revision: June 6, 1973

. {The permanent names of this file are
SMALLTALK.DC. Y
SMALLTALKL.DC.
SMALLTALK2.DC, _
Tts latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with sach verslon.

Look under the structure to discever what file to lead.

This file sheould be displayed using font SROMAN.FD.
- To print, edit with SMDELEG.FD and Write Translated,
~ then print on XGP using font SMDELEG.XG)

" PAGE 1

st o 7 paeE 2

"SMALLTALK, a Model Suilﬂing Languége'
- With Intensional Semantics

by
Alan C, Kay

~Learning Research Group
Yerox Palo Alto Research Center

Abstract

SMAlLTALK iz a language which allows Lh]ldren {and adults} to build
semantic models of their ideas in simple uncompllcated ways, and
dynamically simulate them with respect to arbitrary environments..

Simplicity is achieved by having
a. only one kind of object in the language {(a process) Whlﬁh can
act like all other known computer objects,
. a single uniform scheme for interobject communlnatlon,.anﬂ
¢. an intensional semantics in which the meaning of an object is -
& part of the class to which an cobject belongs rather than

dispersed through the system as part of more conventional

extensional operar1ons,

Benefits are the abilities to create new "functiongl”, "“data”,-
“eontrol™, etc., entities without the usual problems assnc;ated with
- updating and coercion of generic functions.
kbbb

Acknowledgenents

The main influences on the content of this papar were the coprocess
and data/function Pqu1valenre: of FLEX%ka 08,69%, Flex's influence
CSIMOLA ¢Dahl, et.al.?f, LISP iMcC,et.al.d, a number of control idsas
of Dave Fisher%fi—?ﬁi, goals as exyr&ssiﬂns found in Carl Hewitt's
PLANNER‘he-70%, and the simplicity and ease of use of

CLOGOpa, et.al-67, .., 730,

Dan Inwalls of LRG in PARE, the implementer of SMALLTALK, has
revealed many design flaws through his several excellent quick -
“Ythrow away"” implementations of the language. 3MALLTALK could not
have existed witheut his help and good cheer. _ _

Introduction _
SMALLTALK is built from a few simple, vet powerful, ideas.

First, SMALLTALK considers every OBJECT in its world to be an
1ndepanﬁant entity with local state and control. All distinction
between “datalike” and "procedurelike” objects, such as exist in
cother programming languages, is thus removed, This includes "data”,
-such as numbers, strings, arrays, lists, siructures, etc.;
"functions”, such as "factorial', 'plus', 'print', etc,,'“cantral
structures”, such as conditional branches, repeats, recursion, and
so oany “I0 devices", such as 'files', 'the user', 'display and
keyboard', etc.; all are treated alike because they ARE alike.

Next, all objects are composed of PARTS, even if they only contain
themselves. The object can be thought af 45 & dypamic dictionary
wWhich contains all the relations and rules in which it can take
part.

s e e _ o el e AT A

! — s " ; ot : j L PLA R Le T e

Third, ohjects can send and receive MESSAGEs to/from other objects.
This may cause new objects to be created, altered, or even _ -
~-destroyed. _ s
(Since there are no “special” objects, there is only one -message
protocol.) S

Finally, each object .is considered to be a member ({(or INSTANCE) of a
CLASS, which is another object that contains the rules of behavior
shared by all the members. Since each class has a class defining _
object, they are members of the class of class-defining~objects, as
one might expect. :

Messages

A message is & stream of zero or more symbols. .
1f the stream starts with an open parenthesis, 1ts closing
parenthesis absolutely terminates the stream.

"An embedded “."” at the same level will terminate the current
message and will cause the message following it to be sent.

- If the message is composed of parts&hnse termination is
amhiguous, a "," can be used to clarify matters.

 Sending is done from left to right using a very simple rule: control
is passed immediately to the first object encountered in the stream,
along with information about the context of the send. This is all
. the EVALuator does. The recelver may gather in the message in any
“way it chooses. : '
A common first object is an instance of the class "name” (as with
a LISP atom, ali of its members start with a letter and are
composed of letters, digits , underscores, and other special -
characters) .

The action of a name is to look itself up in the current |
environment/dictionary to see 1f it has a meaning {which is
another object), If it does, that object is RETURNed by APPLYing
it to the remainder of the message;--- And so it goes until the
‘message is consumed,

A'venerabla example: factorial.

A message
facterial 1.
is sent in the following manner.

Control is passed to the name “factorial” which looks itself = -
up in the current environment and finds another object as its

. value. The new object is a class defining object which
‘contains the rules for all the instances of the class
Mfactorial":

tn., T if n = 0 then 1 else (n » factorial n - 17,

The action of the class defining object is to create a new
instance of factorial and APPLY it to the message.

The ":" is a "receive” (or "“input™) object whose action is to
EVALuate the input stream {in this case “3", whose value is
“3") and then to make a new entry inte the local environment =

~ to gdefine the name (in this case "n"), After this a lookup of
"n” will have the value "3”. :

ST | - o PAGE 2.2

The ™" is a "send” (or "output”) object which will APPLY the
EVALuation of its argument to the remainder of the message
found in the CALLER's object.
The next message is sent by finding "“if"” which tries to
receive the message consisting of the EVALuation of “n=0".
Control is passed to "n”.
It looks itself up and finds "3%,
Control is passed to it. - _
"3M {5 an instance of the c¢lass number which has many
relations it can respond to.
w1" receives the next object (unevaluated) to see
what it is. (It could be any of +, ~, * /, ¢, ¥,
etc.:; in this case it 1s “="}. :
"I wants now to evaluate the next part of the
message in order to see whether to RETURN “true” or
l!fal Se!r. ., . .
Control is passed to “0” which, as with "3”, .is an
instance of class number, and thus shares the same
relations. '
S0, it looks to its right to see if anything like
+, =, %, etc., is there which it can respond to.
It finds only "then” for which it has no meaning.
So it RETURNs ITSELF to "3” which now has enough info
: to decide "not true”
which is RETURNed to "if" which decides not to evaluate the
message following “then”, but does try to evaluate the
message following "else”.
“n" looks itseif up, finds the value “37 _
which picks up the name "x” for which it has a
meaning. .
Sg "3 tries to evaluate the next.part of its message
. "factorlal n - D" :
Control is passed to “factorial” which leooks
itself up and discovers {as before) a
class-defining object with the rule:

in. t 1f n = 0 then 1 else (n # factorial n - 1}«

“As before, a NEW instance is created which will
try to evaluate the message ™n - 1]" to get a new
value for ™",
" mg®oin the OLD environment looks itself up and
discovers “3”
which looks to its right and finds "~ so it
tries to evaluate the next object "“17 .
which which looks to its right and finds
M rwhich terminates any message to “1')
so it RETURNs ITSELF to "37
which knows how to subtract “1"
which causes a nev instance of class number
.~ to be produced for the result “2"”
which is RETURNed to the ":' in the CURRENT
instance of "factorial® C
which will enter it as a value for "n” in the
CURRENT environment. ' '
“And so it goes.

The preceding rather long winded explanation of a well known
~example iilustrates a number of important points.
. First, although the terminology seems to be more general than
is needed, a simple program in SMALLTALK looks simple and can
© be discussed in simple terms.

Second, only one rule of correspondence is needed to link
form and content. The evaluator ONLY needs to know how to pass

control and context to an object. All other meanings are found
distributed with the objects in the system. As shown, even
‘such a seemingly primary act as creating a new instance is
-~ done by an object and thus can be changed at the user's whin.

~ Third, there are many cases where this generality of approach

pays off handsomely. If we wani to trace the activities of a

name (such as ™n" in instance 1) we need only create an object

which can replace 3" as a meaning (so control will be passed
to IT when "n" is touched), AND has a local entry of its own
for "1 sp that the meaning of "n" will not change with

. respect to its input/output characteristics. This means that
an object can simulate any other object.

‘Fourth, all "relations” and “eperators” (such as S, by

=, etc.) can be defined "intensionaliy” (or “intrinsically™
as parts of an object or object class, rather than

“Mextensionally” (or “extrinsically”), as is usually the case,

as globzl functions.
in fact, "“factorial” could have been defined this way as an

intensional relation of a number. We might then have said
“ " and the class number would know what to do.

This means that the information pertaining to a class and
what its members do need only be stored with the class. No
global operations need to be updated. So, a class may be
deleted without changing the rest of the world. B

Also, this is a very comvenient way to handle problems that
arise from having multiple classes with operations: such as
coercions between classes and the various senses of “fetch”
and “store"” {("e).
For instance, the message "a « 3 + 1”7 means! e
pass control to “a" which will look itself up and
pass control to the object it finds o
which can gather the rest of the message ‘as it
pleases, ' o
1t can look to see if the next name is a “e”,
if so, it can EVAluate "3 + 1" and decide how
.+ to store it.
S0 % 1 « 81", if "b" were an instance of an array,
_could mean
tstore 81 in the lst position’; or _ _
if "b” were an instance of a hash table routine, could
medn
‘associate the hash of “1" with “81" in some way',
etc. _

The problem of coercions will be discused a bit further on.

Fifth, instances may be EVALuated “concurrently” using the -
very same EVALuation strategy. Here, the generality of message
send/receive becomes much more important. _ '

Class Definitions Already in SMALLTALK
(See SMALLTALK1.DC for this branchs.

Some SMALLTALK Progranms
<See SMALLTALKZ.DC for this branchy

ST1 | S : . pacE 1

Necessary Information about this paper.
: latest revision: Jupne O, 1973

- -{The permanent names of this file are
SMALLTALK. DT,
CSMALLTALKL.DC. HhEk
SMALLTALKZ. BC. _ o
Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack. '

The full structured index is found with each version, _
“Look under the structure to discover what file o load. N

“This file should be dispiaved using font 3ROMAN.FD.
“To print, edit with SMDELEG.FD and Write Translated,
then print on XGPF using font SMDELEG.XG)

. SMALLTALK, & Model Bullding Language
With Intensional Semantics

by -
Alan C. Kay:

- Learning Research Group
" Xerox Palo Alto Research Center

Abstract
 (See File SMALLTALK.DC for this branch>

_ -Ackﬁowledgememta
¢See File SMALLTALK.DC for this branch»
Introduction _
 <See File SMALLTALK.DC for this branch»
~ Messages _
<See File SMALLTALK.DC for this branch>

FEIY

 Class Definitions Already in SMALLTALK

SMALLTALK is supplied with many useful'aiasseg,”intluding QuiﬁE'a
few found in one way or another in other programming languages.

These definitions are written in SMALLTALK as though they were
not primitive objects. In some cases (such as the definition of
M{f") a primitive must be used to describe itself---which causes
some obscurity.

Inﬁut and OQutput Objects

informally (i.e,--~more readable)

-
-

Input a Value

followed by a name will evaluate the input stream to

nroduce a new object which will be bound to the name.

This is exactiy the same as L0OGO.

Exanple; :value . o . L
will bind the result of evaluating the input stream to
“Yyalue®)

Input a Token

“followed by a <name> will not evaluate the input stream
but will bind the next object there to the <name>.

There is no equivalent for this in LISP or LOGO, it acts
as though the next input object were quoted.

Example; .value _
will bind the next input object to “value”

Check Input for a Token

“followed by a <name> will check the input stream to see 1f
an identical <name> is there. No evaluation will take

place. The Input Stream Pointer (or Program Counter) will
NOT be advanced if the match fails. If the match succeeds,
the ISP will be advanced to the next position.,
This is used frequentiy to check for “operator” tokens
such as +, %, and .

Example; ot will check the input stream for a
"i? and wiil return TRUE if successful

Input Literal Strean

 followed by a <name» will bind & reference to the Input
Stream at the current point.

This is equivalent to FEXPR in LISP 1.5 or NLAMBDA in
BEN-LISP. . _
Example; svalue will bind “value"” to the input'
stream. EVALuation of this fragment may be delayed
until later.

¢Other Input Objectss

ST1

- " PAGE 2.1

will be mentioned here in a later version of .this memo. An

“ohject to EVALuate a sequence of the input stream (like
EVLIST in LISP) will probably be included at the very
least,

T APPLY-RETURN a value.

This output object is used when when a subroutine control
structure and message passing discipline is desired. Its
single argument is EVALuated in the CURRENT environment and
then APPLYed to the program stream of the CALLER process
to which CONTROL also is RETURMNed.
When used in "left nested” argument gathering (for example
Cx.first,last or (A + B) + C), APPLY-RETURN will continue
" the evaluation process.

T PASSIVE-RETURN a value. _ C o Co
The single argument is evaluated in the CURRENT environment
and RETURNed to the CALLER along with CONTROL. . :
E?ESIVEwRETBRN is similar to OUTPUT in LOGO or RETURN in
Li5P.

fl -~ GENERAL-RETURN a4 value,
' it valus process
is the form.
it value caller, _ o
is the same as PASSIVE-RETURN.
i fapply value message) caller.
is the same as ACTIVE-RETIURN.

'_<Otﬁer Output Ohjects>

will be explained soon.

Defining a Class (Function)

There are many ways to define a class depending on how much
the user wants to know about the language and how much control
‘he desires to have over the format of the INSTANCE of a

" definition. For now we will only be concerned with semantic
notions {which also require the least amount of explanation to
ail concerned). o o

LOGO/SIMULA/FLEX Fashion

"To” will define classes of roughly the power of SIMULA or
FLEX which include such things as function, process, and
structure definitions in other languages.

Te To .name .body ,End. :
“As shown, “"To" takes the first object in. the message -
stream unEVALuated to be the name of the class. All of the
rest of the input stream is a structure which is taken to
be the code body of the class. A member of the class CLASS
is INSTANTIATED and bound to the name., When control is
later passed to-the name & new instance of the class will

be created andiruny”
End.

0 ?i‘
5 {ﬁ:ib\ ‘F’Q‘ww-s ‘

add

R o N = R

:_Examplés;

: To factorial in., = _
N T 1f n=0 then 1 else (nxfdctorial n-1).

§? - End.

S _ This looks a lot like LOGO (intentionally) except that

‘the input variable “:n” is not part of the heading (as
in LOGO), bhut is part of the "body”. This reflects the
_fact that input objects act like functions and thus.can
be used anywhere in a program. When a "“function” is
instantiated, the first thing that is done in most
languages is to bind the arguments to a new set of _
names. The very same effect is achieved in SMALLTALK .
when the “evaluating input object”, ": , is used
in the first set of expressions.
Conventional Class Definition A
“Ta*" as shown above, was included mainly for people familiar
with LOGO and LISP. SMALLTALK really treats "class objects”
like any other object. That is, any object is a member of a
class---s50 an object which creates a class is a member of -
~tlass CLASS. o
This means that a more general (and more conventional) way to-
- define factorial would be to say

Jfactorial « class,(If :n = 0 then 1 else (n & factorial n

- 1} .
of perhaps |
factorial « class.i in. R | _ ” :
P If n = 0 then 1 else in # o D
: i ifactorial n - 1

using the <tab 1ist> ﬁ%nventionﬁ One could even say

LVET - LN, _

factorial « class -
L3038 var + (= U then 1 else)
$(vart .{x factorial n - 1)},

where “i" means "append” pretty much in the LISP sense.

Total Control of the Instance _ _ o
sxxfor bit pickers, more on this ldater this summer.

~Control fand State changing, etc.)

To If iexp.

texp.

CEnd. _ o - N o '

COMRIET is really just a dummy which computes 4 value to be
APPLYed to “then” or “.”. This means that "TRUE"ness and
UEALSE"ness are properties of objects. This allows us to
consider all legal numbers as TRUE, if we wish., A class
with one instance EMPTY is provided to handle “FALSE” .
CASEes,

T@ "

PAGE 2.3

T phane Enﬁ'g (exp._r exp)

To

To

To

To

To

 £nd.

"lookup the name in current eHV1ronment (if not
there, enter it as most global) and replace BINDING
with value of "exp” ".

E! name,
“nate that the value of the expression on the right “exp” is
RETURNed when a rebind is attempted, but when used as QUOTE,
it is the name which is RETURNed.”

End.

Eval axp sglobaleny treturn :msg.
“There are many ways to EVALuate expressions in Smalltalk
This one allows the user to set up an arbitrary &nv1rﬂnmant o
for free variable fetches, an@arbirary RETURN process, and -~
an arbitrary MESSAGE environment, “Eval? is included here :
since it is very frequently used in definitions of new

contrel primitives”.

Repeat .Loopexp.

Code repeat. _

Eval Loopexp iglobal iself EMPTY.
Code again.

End. _ n _
“Repeat EVALs its loop expression in the context of its
caller.”

Again _ :
"RETURN: control to the caller of its caller--i.e. 1o a
loaping contrel primitive of some kind such as “Repeat” o .
“which can decide what to do next”, _ . R
End. ‘ W)
. ‘. b}}&; RS

Done _ DR @
“RETURNs control to the caller of (the caller of its o
caller)--to one level further out than a looping control - kﬁﬂﬁﬁﬁﬂ
primitive, This automatically terminates the loop. o
Eventually “Done” will have an optional argument for 5

. dpasalng the RESULT of the loop back”. ' .

End.

Create
“Reschedule caller to be run instead of waiting for a
subroutine RETURNY.

rcall, e
"This causes an evaluation of the argument., So it will also
be running™.

‘End.

"As seen, “Create’” causes g parallel fork in contrcl
Actually, tHTS is what happens naturally in
SMALLTALK---the default message discipline is
deliberately limited to a subroutine “wait for reply”
.protocel. “Create” simply prevents the caller from being
passivated”,

To Word

Explaln

t"Words are like LISP atoms or ALGOL identifiers. Their basic
operations have to do with assembly and disassembly of their
internal structures,
Words also have a special meaning in the context of
evaluation. An ungquoted instance of a word will be locked

PR N RS R R

up {look itself up) when EHFDUﬂtg& by the EVALuatora 50
cat.first means "look up the most local binding of the
variable "cat” and APPLY it to .first”. But scats first
means " call routine "' which RETURNs the word “cat”,
which is APPLYed to ,first, which, as seen below, will
- RETURN “e¥ 7. .
" Numbers are words alse, but have many additional operations
having to do with arithmetic and so0 are defined as a separate
class.”,

pt o tvalue,word o
tself,

s

CFirst . |
t®the first character of the(Efintname of the word"”.

kel I
T"same as “first"”,

rul

1ast wn
t",..the last character of the prlntname of the word”

fl 1 il : :
t. . the same result as for "last”, Thig is Just an
abbreviation.”
Joutfirst . :
t"Somehow return all but the first character of the strlﬂg
rpprﬁqentatlmn of the word.,”

JDE :
?“.,.ﬂame as butfirst.,”

“uhutlast .
' "Somehow return alil but the last character of the strzng
representation of the word.V

t%, ., same as butlast.”

Sjoin . tvaluel,word? ..
T"This 1s roughly equivalent to the "cons” of LISP. The word
will be connected to the 1ist in "valuel”, and a new list
reference will be returned.”

: sWionin oivaluel.word? |
. T™This is roughly equlvalent to contatenate in 5NOROL. The
printname of the two words are joined together to produce a

new word which is returned. .cat wioin .dog produces
-scatdog.”
Caword? .
Tvalue.
JENpLYT
TEMPTY.
P B .
nlengt? . v
THSomehaw calculate the length {in charaaters) of the
number {including -7 and “.") ¥
Mm
sPTint .
P “Return a string representation of the object whlch may ba
. ﬁ;wi - displayed Each class which has instances which have a
=;§9 jgu meaningful visual representdtion will have a meaning for .
IRV .print. This is much simpler than having to inform a global
g gy’e print routine about the format of each new class.”
&

5T1

To

Cf o

- PAGE 2.5

~then o, tvaluel o ,else o .dum . * valuel R
or « T valuel. :
"Having "then” in "Word” in this way means that we are . .
adopting a convention that legal wordssn the context of a
teiB? act as TRUE and thus cause the "g§en” expression to be

evaliated.” s
(™ Tt P
Numbgr
HExplain.

T"Numbers work in a very intuitive way. The REAB program
recognizes number literals and creates instances for them in
storage.The bits that represent the particular instance of a
number are stored in the variable "value” and can be changed
by assignment as shown. This might be illegal if it is
decided that numbers are unique atoms. The opposite is

“assumed here,”

e . ivalue.number?.,

T seif,
If
~_evalugted and bound to “value” which is applied to number?
~"""which returns TRUE if it is. The actual value of the
ﬂumber objiect itself has been changed so that other objects
which have pointers to "self” will feel the change. This
might be made illegal, .

wEirst
"Somehow return the first character of the number which is
" ~" if negative, is “.” if between & and 1, and a digit from §
to 9 otherwise. It may be reasonable to calculate this value
ratheg Ehan keep a4 string representation of the number
around,

t*...the same result as for “first”. This is just an
abbreviation.”

last
T"Scmehcw return the last character of the number which is-
" if greater than 1 and known inexactly, and a digit from O
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around.”

i - ' ;
! T, ..the zame result as for “last®. This ig just an

abbreviation,”

©opbutfirst o

bl

t"Somehow return all but the first character of the string
representation of the number.”

™. ..5amne as butfirst.”

Sbutlast ..
t"Somehow return all but the last char&cter ﬂf the string
representation of the number.” o

[} bl e
™., .same - as butiast.”

VAT recognized in the input stream, what follows is

v

X

=
DA
F .

Sjoin ..o ivaluel.word? . : S - o
t"This is roughly equivdlent to the “cons” of LISP. The word
will bhe connected to the list in “waluel”, and a4 new 1ist
reference will be returned.” :

SHioin Lovaluelword? - _ _ o -
1%This Is roughly equivalent to concatenate in SNOBOL. The
printname of the two words are joined together to produce &
new word which is returned. ,cat wioin .dog . produces
+catdog.”

SJumber? .
tvaius. _
"Anything not EMPTY will act as TRUE.”

JHord? .
Tvalue,

SEMPIYT .
TEMPTY,

.length .. o e
TSomehow calculate the length {in characters) of the
numher {including "-" and ".") .”

Wprint . : _ -
THReturn a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation wiil have a meaning for
.print. This is much simpler than having to inform a global
print routine about the format of each new class.”

Sthen . :valusl . .else o .dum .. T valuel

_ or = T valusl, S
"Having "“then” in "Number” in this way means that we are .
adopting a convention that legal numbers in the context of a
test, act as TRUE and thus cause the “then” expression to .be
evaluated.” . :

#= . tvaluel,number? . : S
t"value if value and valuel are numerically EQUAL, otherwise
EMPTY. Note that this allows "a=b=c” to work correctly.”

¢# o tvaluel,.number? . _
TUYEMPTY 1f value and valuel are not numerically EQUAL,
stherwise value., Note that this allows “as=bec" to work
Cogeorrectly.”

ﬁé‘ﬁ svaluel,number? . _ _ o S
t"*value if value is numerically less than valuel, otherwise
© EMPTY. Note that this allows "“acb«c” to work correctly.”

¢ ¥ o tvaluet mumber? .

t"value if value 13 numerically greater than valuel, otherwise
CEMPTY.. Note that this allows "arbyc” to work correctly.”

o+ wivaluelnunber? ..
t'value added to valuel.”

T esvaluel,ounber? .

ttyaluel subtracted from value."”

D g% e tnumber? .

Tvalue multipiied by valuel."

_ q.xQQ;ﬁ'ﬁ

o/ = ivaluel.number? .o
t™vatue divided by wvaluei.”

Mod o ivaluel.number? .
t"value moduleo valuei.,”
WP = , o
t". .. the integer part of value.”
.n. f p s) .
™, ..the fractional part of vaiue."

LBXP . o
™. .. the exponent {to the base 10} of value.”

WAL
T if wvalue ¢ @ then {0 - valug) else value,

¢other numeric functions which are stored &s attributes>
sin, cos, other trig functions etc,

To List
Explain _
First o o+ = rvalus,list .
vaiue ,word?
oF = o+ = Ivalue,list .
_ vaiue . word?
C.1ast = o+ . value,list .
value word? ..
ol o o= . 1value,list .
value,word? .
Cetmtfirst o o+ o tvalue,list o
value,word? .
”bf P :Value+115t aa
- valus word? o
Jbutlast o .+ - :tvalue,list .
_ value,word? =
2 D1 o e o tvalue,list o
value,word? .

#

i

pjoin .
1

o=

4 - 4 .
as5enience?

P - o

2empty? .

siength .

Jprint _

w= o svalue,list o
a® :Value§135t b
2 ¢ . tvalue,list o
Ty wetvalue,list o
makeword .

To String

Fosition _ U ‘ T
Here are a set of useful operations for manipulating R
two~dimensional space. The convention is adopted that “posx” and
“posy” will refer to position state, and “heading will refer to
direction state. The programs are written so that the most local
occurance of these variables in the dynamic environment will be
updated. See the program “Spacevehicle” for a simple example.

~ To Forward idistance.

posx « posx + distance # heading.cos.
posy + posy + distance » headinga.sin.

S . e e . o . T S e TR R R L

 End.

To Right iangle, Co
. CE?aeading « (heading - angle) mod 34640,
End. '

To Left :angle. _ :
o heading « theading + angle)l mod J360.
- End.

Qutpui {(to displays, music, turtles, etc.)

To Show :picture. : . '
“This comprehensive routine allows the picture to be EVAlLed
and then coples the picture information into the display area
" using either the dynamically available variables "posx”,
posy”, "heading”, if its own bindings for these parameters are
EMPTY.

STL | - PAGE 3

Some SMALL’I‘AL]\ ngrams :
- <See SMALLTALK2.DC far Prngram Examplam o

