
APPENDIX: A Smalltalk Simulation of the Interpreter

Class new title: 'Contextg
fields: 'sender method pc tempframe stackptr : mclass receiver'
asFollowsi

Contexts carry the dynamic state of Smalltalk processes. They are accessed in efficient ways by
the microcode interpreter. At the same time, they are instances of a perfectly normal Smalltalk
class. In this way, the full generality of Smalltalk can be applied to examining and tracing the
progress of Smalltalk execution.

The code- below differs from the actual code in Smalltalk-76 in that it corresponds to the slightly
simplified categories of the text, and has not been carefully checked for Off-by-1 errors.

I b.

Beyond the specifics in the text, the interested reader will want to know:
- ". 'F is the subscript message, as in: tempframe'Zobits
- .ezcept for assignment, "e" is treated as an agglutinating

message part, as in: t i + self pop -
- the * symbol indicates conditional execution;

if the preceding value is true, then the following body· of code
is executed, and control exits the outer. CO brackets. This "if-only"
form serves to build dispatch tables as in the message "next" bdow

- the default value returned from any message is "self", the receiver

of the message. Other values may be returned with the "It" symbot.

The messages "instfield: n" and "instfield: ne uaL", which are used betow to read and write the
n-th fieid of an instance, clearly violate the principle of moduZarity. This reflects that the buck
stops here, and these primitive messages appear nowhere else in the system.

Access to Fields
sender: sender method: method pc: pc tempframe: tempframe stackptr: stackptr

mclass: mclass receiver: receiver "initializes all fields"

Simulation of the Interpreter
step I byte lobits "dispatch-on next code syZEable"

[byte 4- self nextbyte.- -
lobits + bytel 16.
byte/16=1»[self push: receiver instfield: lobits]; "load from instance"

=2*-self push: tempframe'lobits]; "load from temps (and args)"
=3* -self push: (method literals: lobits)]; "load froin literals"
=44 -self push: (method literals: lobits) value]; "load indirectly flom Ziterals"

-=5* -self push: sqlf instfield: lobits]; "load from this Context"
=64.-self push: G°(-1 0 1210 true false nil) -lobits]; "frequent constants"
=7* -Itself send: (method literal: lobits)];
=8*-Itself send: (SpecialMessages'lobits)]; "frequent messages"
=9*Llobits<8*[pc, pc+lobits] "short jump forward"

self pop»[] pc,- pc+lobits-8]; "short branch if false and pop"
=10*[lobits<8*[pc,- lobits-3*256+self nextbyte+pc]"long jump forward and back"

self pop=*[pc*· pc+1]; "skip extension byte on true"
pc*- lobits-11*256+self nextbyte+pc]; "Zong bfp"

=11»[lobits=0*[self pop]; "pop stack"
=1*[self store: self top into: self nextbyte]; "store"
=2*[self store: self pop into: self nextbyte]; "store and pop"
=3»[sender push: self top. Irsender]] "return value to sender"

]
same encoding as above"

val];

le 4- val]

store: val into: field I lobits · "
[lobits *- bytel 16.
field/16=1»[receiver instfield: lobits +

=2*[tempframe'lobits f val];
=3*[user notify: 'invalid store'];
=4*[(method literals: lobits) vali
=5*[self instfield: lobits e val]

"store into instance"
"store into temps (and a;rgs)"
"can't store into literals"

;"store indirecity through literals"
'store.into.this Context"

send: message I class meth callee t i "send a message"
[class 4-self top class.
untili (meth,- class lookup: message) doft "look up the method"

2

[class# class superclass. 'follow the superclass chain if necess"
class=nil=>[user notify: 'Unrecognized message: '+message]1

[meth primitive:> 'If flagged us primitive, then do it"
[self doprimitive: meth=>[Rself.]]]. "If it fails, proceed with send"

callee Context new '"create new Context, and fill its fields"
sender: self method: meth pc: nieth startpc
tempframe: 0- Vector new: meth tfrarnesize) stackpir: meth startstack
mclass: class receiver: self pop.

forS i to: meth nargs do: "pass arguments"
[t-i- self pop]

Ircallee] "return new Context, so it becomes current"
nextbyte "step pc and return next code syllable"

Ilimethod-(pc•- pc+1)]

Stack-related Messages
push: val "push value onto top of stack"

[tempframe-(stackptr•- stackptr+1) *- val]
top "return value on top of stack'

[lt·tempframe-stackptr]
popit "pop cable off stack and return it"

It- tornpframe'stackptr.
stackptr. stackptr-1. tt]

